This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of a triangles in a graph. A triangle in a graph is a set of three (different) vertices completely connected with each other. Such vertices induce a closed walk of length 3, see grtriclwlk3 , and the vertices of a cycle of size 3 are a triangle in a graph, see cycl3grtri . (Contributed by AV, 20-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-grtri | ⊢ GrTriangles = ( 𝑔 ∈ V ↦ ⦋ ( Vtx ‘ 𝑔 ) / 𝑣 ⦌ ⦋ ( Edg ‘ 𝑔 ) / 𝑒 ⦌ { 𝑡 ∈ 𝒫 𝑣 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cgrtri | ⊢ GrTriangles | |
| 1 | vg | ⊢ 𝑔 | |
| 2 | cvv | ⊢ V | |
| 3 | cvtx | ⊢ Vtx | |
| 4 | 1 | cv | ⊢ 𝑔 |
| 5 | 4 3 | cfv | ⊢ ( Vtx ‘ 𝑔 ) |
| 6 | vv | ⊢ 𝑣 | |
| 7 | cedg | ⊢ Edg | |
| 8 | 4 7 | cfv | ⊢ ( Edg ‘ 𝑔 ) |
| 9 | ve | ⊢ 𝑒 | |
| 10 | vt | ⊢ 𝑡 | |
| 11 | 6 | cv | ⊢ 𝑣 |
| 12 | 11 | cpw | ⊢ 𝒫 𝑣 |
| 13 | vf | ⊢ 𝑓 | |
| 14 | 13 | cv | ⊢ 𝑓 |
| 15 | cc0 | ⊢ 0 | |
| 16 | cfzo | ⊢ ..^ | |
| 17 | c3 | ⊢ 3 | |
| 18 | 15 17 16 | co | ⊢ ( 0 ..^ 3 ) |
| 19 | 10 | cv | ⊢ 𝑡 |
| 20 | 18 19 14 | wf1o | ⊢ 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 |
| 21 | 15 14 | cfv | ⊢ ( 𝑓 ‘ 0 ) |
| 22 | c1 | ⊢ 1 | |
| 23 | 22 14 | cfv | ⊢ ( 𝑓 ‘ 1 ) |
| 24 | 21 23 | cpr | ⊢ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } |
| 25 | 9 | cv | ⊢ 𝑒 |
| 26 | 24 25 | wcel | ⊢ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 |
| 27 | c2 | ⊢ 2 | |
| 28 | 27 14 | cfv | ⊢ ( 𝑓 ‘ 2 ) |
| 29 | 21 28 | cpr | ⊢ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } |
| 30 | 29 25 | wcel | ⊢ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 |
| 31 | 23 28 | cpr | ⊢ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } |
| 32 | 31 25 | wcel | ⊢ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 |
| 33 | 26 30 32 | w3a | ⊢ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) |
| 34 | 20 33 | wa | ⊢ ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) |
| 35 | 34 13 | wex | ⊢ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) |
| 36 | 35 10 12 | crab | ⊢ { 𝑡 ∈ 𝒫 𝑣 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) } |
| 37 | 9 8 36 | csb | ⊢ ⦋ ( Edg ‘ 𝑔 ) / 𝑒 ⦌ { 𝑡 ∈ 𝒫 𝑣 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) } |
| 38 | 6 5 37 | csb | ⊢ ⦋ ( Vtx ‘ 𝑔 ) / 𝑣 ⦌ ⦋ ( Edg ‘ 𝑔 ) / 𝑒 ⦌ { 𝑡 ∈ 𝒫 𝑣 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) } |
| 39 | 1 2 38 | cmpt | ⊢ ( 𝑔 ∈ V ↦ ⦋ ( Vtx ‘ 𝑔 ) / 𝑣 ⦌ ⦋ ( Edg ‘ 𝑔 ) / 𝑒 ⦌ { 𝑡 ∈ 𝒫 𝑣 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) } ) |
| 40 | 0 39 | wceq | ⊢ GrTriangles = ( 𝑔 ∈ V ↦ ⦋ ( Vtx ‘ 𝑔 ) / 𝑣 ⦌ ⦋ ( Edg ‘ 𝑔 ) / 𝑒 ⦌ { 𝑡 ∈ 𝒫 𝑣 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) } ) |