This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of a triangles in a graph. A triangle in a graph is a set of three (different) vertices completely connected with each other. Such vertices induce a closed walk of length 3, see grtriclwlk3 , and the vertices of a cycle of size 3 are a triangle in a graph, see cycl3grtri . (Contributed by AV, 20-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-grtri | Could not format assertion : No typesetting found for |- GrTriangles = ( g e. _V |-> [_ ( Vtx ` g ) / v ]_ [_ ( Edg ` g ) / e ]_ { t e. ~P v | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. e /\ { ( f ` 0 ) , ( f ` 2 ) } e. e /\ { ( f ` 1 ) , ( f ` 2 ) } e. e ) ) } ) with typecode |- |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cgrtri | Could not format GrTriangles : No typesetting found for class GrTriangles with typecode class | |
| 1 | vg | ||
| 2 | cvv | ||
| 3 | cvtx | ||
| 4 | 1 | cv | |
| 5 | 4 3 | cfv | |
| 6 | vv | ||
| 7 | cedg | ||
| 8 | 4 7 | cfv | |
| 9 | ve | ||
| 10 | vt | ||
| 11 | 6 | cv | |
| 12 | 11 | cpw | |
| 13 | vf | ||
| 14 | 13 | cv | |
| 15 | cc0 | ||
| 16 | cfzo | ||
| 17 | c3 | ||
| 18 | 15 17 16 | co | |
| 19 | 10 | cv | |
| 20 | 18 19 14 | wf1o | |
| 21 | 15 14 | cfv | |
| 22 | c1 | ||
| 23 | 22 14 | cfv | |
| 24 | 21 23 | cpr | |
| 25 | 9 | cv | |
| 26 | 24 25 | wcel | |
| 27 | c2 | ||
| 28 | 27 14 | cfv | |
| 29 | 21 28 | cpr | |
| 30 | 29 25 | wcel | |
| 31 | 23 28 | cpr | |
| 32 | 31 25 | wcel | |
| 33 | 26 30 32 | w3a | |
| 34 | 20 33 | wa | |
| 35 | 34 13 | wex | |
| 36 | 35 10 12 | crab | |
| 37 | 9 8 36 | csb | |
| 38 | 6 5 37 | csb | |
| 39 | 1 2 38 | cmpt | |
| 40 | 0 39 | wceq | Could not format GrTriangles = ( g e. _V |-> [_ ( Vtx ` g ) / v ]_ [_ ( Edg ` g ) / e ]_ { t e. ~P v | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. e /\ { ( f ` 0 ) , ( f ` 2 ) } e. e /\ { ( f ` 1 ) , ( f ` 2 ) } e. e ) ) } ) : No typesetting found for wff GrTriangles = ( g e. _V |-> [_ ( Vtx ` g ) / v ]_ [_ ( Edg ` g ) / e ]_ { t e. ~P v | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. e /\ { ( f ` 0 ) , ( f ` 2 ) } e. e /\ { ( f ` 1 ) , ( f ` 2 ) } e. e ) ) } ) with typecode wff |