This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of topological bases. Equivalent to definition of basis in Munkres p. 78 (see isbasis2g ). Note that "bases" is the plural of "basis". (Contributed by NM, 17-Jul-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-bases | |- TopBases = { x | A. y e. x A. z e. x ( y i^i z ) C_ U. ( x i^i ~P ( y i^i z ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ctb | |- TopBases |
|
| 1 | vx | |- x |
|
| 2 | vy | |- y |
|
| 3 | 1 | cv | |- x |
| 4 | vz | |- z |
|
| 5 | 2 | cv | |- y |
| 6 | 4 | cv | |- z |
| 7 | 5 6 | cin | |- ( y i^i z ) |
| 8 | 7 | cpw | |- ~P ( y i^i z ) |
| 9 | 3 8 | cin | |- ( x i^i ~P ( y i^i z ) ) |
| 10 | 9 | cuni | |- U. ( x i^i ~P ( y i^i z ) ) |
| 11 | 7 10 | wss | |- ( y i^i z ) C_ U. ( x i^i ~P ( y i^i z ) ) |
| 12 | 11 4 3 | wral | |- A. z e. x ( y i^i z ) C_ U. ( x i^i ~P ( y i^i z ) ) |
| 13 | 12 2 3 | wral | |- A. y e. x A. z e. x ( y i^i z ) C_ U. ( x i^i ~P ( y i^i z ) ) |
| 14 | 13 1 | cab | |- { x | A. y e. x A. z e. x ( y i^i z ) C_ U. ( x i^i ~P ( y i^i z ) ) } |
| 15 | 0 14 | wceq | |- TopBases = { x | A. y e. x A. z e. x ( y i^i z ) C_ U. ( x i^i ~P ( y i^i z ) ) } |