This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC TOPOLOGY
Topology
Topological bases
df-bases
Metamath Proof Explorer
Description: Define the class of topological bases. Equivalent to definition of
basis in Munkres p. 78 (see isbasis2g ). Note that "bases" is the
plural of "basis". (Contributed by NM , 17-Jul-2006)
Ref
Expression
Assertion
df-bases
⊢ TopBases = x | ∀ y ∈ x ∀ z ∈ x y ∩ z ⊆ ⋃ x ∩ 𝒫 y ∩ z
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
ctb
class TopBases
1
vx
setvar x
2
vy
setvar y
3
1
cv
setvar x
4
vz
setvar z
5
2
cv
setvar y
6
4
cv
setvar z
7
5 6
cin
class y ∩ z
8
7
cpw
class 𝒫 y ∩ z
9
3 8
cin
class x ∩ 𝒫 y ∩ z
10
9
cuni
class ⋃ x ∩ 𝒫 y ∩ z
11
7 10
wss
wff y ∩ z ⊆ ⋃ x ∩ 𝒫 y ∩ z
12
11 4 3
wral
wff ∀ z ∈ x y ∩ z ⊆ ⋃ x ∩ 𝒫 y ∩ z
13
12 2 3
wral
wff ∀ y ∈ x ∀ z ∈ x y ∩ z ⊆ ⋃ x ∩ 𝒫 y ∩ z
14
13 1
cab
class x | ∀ y ∈ x ∀ z ∈ x y ∩ z ⊆ ⋃ x ∩ 𝒫 y ∩ z
15
0 14
wceq
wff TopBases = x | ∀ y ∈ x ∀ z ∈ x y ∩ z ⊆ ⋃ x ∩ 𝒫 y ∩ z