This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Divisibility by two is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dec2dvds.1 | ⊢ 𝐴 ∈ ℕ0 | |
| dec2dvds.2 | ⊢ 𝐵 ∈ ℕ0 | ||
| dec2dvds.3 | ⊢ ( 𝐵 · 2 ) = 𝐶 | ||
| dec2dvds.4 | ⊢ 𝐷 = ( 𝐶 + 1 ) | ||
| Assertion | dec2dvds | ⊢ ¬ 2 ∥ ; 𝐴 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dec2dvds.1 | ⊢ 𝐴 ∈ ℕ0 | |
| 2 | dec2dvds.2 | ⊢ 𝐵 ∈ ℕ0 | |
| 3 | dec2dvds.3 | ⊢ ( 𝐵 · 2 ) = 𝐶 | |
| 4 | dec2dvds.4 | ⊢ 𝐷 = ( 𝐶 + 1 ) | |
| 5 | 5nn0 | ⊢ 5 ∈ ℕ0 | |
| 6 | 5 | nn0zi | ⊢ 5 ∈ ℤ |
| 7 | 2z | ⊢ 2 ∈ ℤ | |
| 8 | dvdsmul2 | ⊢ ( ( 5 ∈ ℤ ∧ 2 ∈ ℤ ) → 2 ∥ ( 5 · 2 ) ) | |
| 9 | 6 7 8 | mp2an | ⊢ 2 ∥ ( 5 · 2 ) |
| 10 | 5t2e10 | ⊢ ( 5 · 2 ) = ; 1 0 | |
| 11 | 9 10 | breqtri | ⊢ 2 ∥ ; 1 0 |
| 12 | 10nn0 | ⊢ ; 1 0 ∈ ℕ0 | |
| 13 | 12 | nn0zi | ⊢ ; 1 0 ∈ ℤ |
| 14 | 1 | nn0zi | ⊢ 𝐴 ∈ ℤ |
| 15 | dvdsmultr1 | ⊢ ( ( 2 ∈ ℤ ∧ ; 1 0 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 2 ∥ ; 1 0 → 2 ∥ ( ; 1 0 · 𝐴 ) ) ) | |
| 16 | 7 13 14 15 | mp3an | ⊢ ( 2 ∥ ; 1 0 → 2 ∥ ( ; 1 0 · 𝐴 ) ) |
| 17 | 11 16 | ax-mp | ⊢ 2 ∥ ( ; 1 0 · 𝐴 ) |
| 18 | 2 | nn0zi | ⊢ 𝐵 ∈ ℤ |
| 19 | dvdsmul2 | ⊢ ( ( 𝐵 ∈ ℤ ∧ 2 ∈ ℤ ) → 2 ∥ ( 𝐵 · 2 ) ) | |
| 20 | 18 7 19 | mp2an | ⊢ 2 ∥ ( 𝐵 · 2 ) |
| 21 | 20 3 | breqtri | ⊢ 2 ∥ 𝐶 |
| 22 | 12 1 | nn0mulcli | ⊢ ( ; 1 0 · 𝐴 ) ∈ ℕ0 |
| 23 | 22 | nn0zi | ⊢ ( ; 1 0 · 𝐴 ) ∈ ℤ |
| 24 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 25 | 2 24 | nn0mulcli | ⊢ ( 𝐵 · 2 ) ∈ ℕ0 |
| 26 | 3 25 | eqeltrri | ⊢ 𝐶 ∈ ℕ0 |
| 27 | 26 | nn0zi | ⊢ 𝐶 ∈ ℤ |
| 28 | dvds2add | ⊢ ( ( 2 ∈ ℤ ∧ ( ; 1 0 · 𝐴 ) ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 2 ∥ ( ; 1 0 · 𝐴 ) ∧ 2 ∥ 𝐶 ) → 2 ∥ ( ( ; 1 0 · 𝐴 ) + 𝐶 ) ) ) | |
| 29 | 7 23 27 28 | mp3an | ⊢ ( ( 2 ∥ ( ; 1 0 · 𝐴 ) ∧ 2 ∥ 𝐶 ) → 2 ∥ ( ( ; 1 0 · 𝐴 ) + 𝐶 ) ) |
| 30 | 17 21 29 | mp2an | ⊢ 2 ∥ ( ( ; 1 0 · 𝐴 ) + 𝐶 ) |
| 31 | dfdec10 | ⊢ ; 𝐴 𝐶 = ( ( ; 1 0 · 𝐴 ) + 𝐶 ) | |
| 32 | 30 31 | breqtrri | ⊢ 2 ∥ ; 𝐴 𝐶 |
| 33 | 1 26 | deccl | ⊢ ; 𝐴 𝐶 ∈ ℕ0 |
| 34 | 33 | nn0zi | ⊢ ; 𝐴 𝐶 ∈ ℤ |
| 35 | 2nn | ⊢ 2 ∈ ℕ | |
| 36 | 1lt2 | ⊢ 1 < 2 | |
| 37 | ndvdsp1 | ⊢ ( ( ; 𝐴 𝐶 ∈ ℤ ∧ 2 ∈ ℕ ∧ 1 < 2 ) → ( 2 ∥ ; 𝐴 𝐶 → ¬ 2 ∥ ( ; 𝐴 𝐶 + 1 ) ) ) | |
| 38 | 34 35 36 37 | mp3an | ⊢ ( 2 ∥ ; 𝐴 𝐶 → ¬ 2 ∥ ( ; 𝐴 𝐶 + 1 ) ) |
| 39 | 32 38 | ax-mp | ⊢ ¬ 2 ∥ ( ; 𝐴 𝐶 + 1 ) |
| 40 | 4 | eqcomi | ⊢ ( 𝐶 + 1 ) = 𝐷 |
| 41 | eqid | ⊢ ; 𝐴 𝐶 = ; 𝐴 𝐶 | |
| 42 | 1 26 40 41 | decsuc | ⊢ ( ; 𝐴 𝐶 + 1 ) = ; 𝐴 𝐷 |
| 43 | 42 | breq2i | ⊢ ( 2 ∥ ( ; 𝐴 𝐶 + 1 ) ↔ 2 ∥ ; 𝐴 𝐷 ) |
| 44 | 39 43 | mtbi | ⊢ ¬ 2 ∥ ; 𝐴 𝐷 |