This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Divisibility by two is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dec2dvds.1 | |- A e. NN0 |
|
| dec2dvds.2 | |- B e. NN0 |
||
| dec2dvds.3 | |- ( B x. 2 ) = C |
||
| dec2dvds.4 | |- D = ( C + 1 ) |
||
| Assertion | dec2dvds | |- -. 2 || ; A D |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dec2dvds.1 | |- A e. NN0 |
|
| 2 | dec2dvds.2 | |- B e. NN0 |
|
| 3 | dec2dvds.3 | |- ( B x. 2 ) = C |
|
| 4 | dec2dvds.4 | |- D = ( C + 1 ) |
|
| 5 | 5nn0 | |- 5 e. NN0 |
|
| 6 | 5 | nn0zi | |- 5 e. ZZ |
| 7 | 2z | |- 2 e. ZZ |
|
| 8 | dvdsmul2 | |- ( ( 5 e. ZZ /\ 2 e. ZZ ) -> 2 || ( 5 x. 2 ) ) |
|
| 9 | 6 7 8 | mp2an | |- 2 || ( 5 x. 2 ) |
| 10 | 5t2e10 | |- ( 5 x. 2 ) = ; 1 0 |
|
| 11 | 9 10 | breqtri | |- 2 || ; 1 0 |
| 12 | 10nn0 | |- ; 1 0 e. NN0 |
|
| 13 | 12 | nn0zi | |- ; 1 0 e. ZZ |
| 14 | 1 | nn0zi | |- A e. ZZ |
| 15 | dvdsmultr1 | |- ( ( 2 e. ZZ /\ ; 1 0 e. ZZ /\ A e. ZZ ) -> ( 2 || ; 1 0 -> 2 || ( ; 1 0 x. A ) ) ) |
|
| 16 | 7 13 14 15 | mp3an | |- ( 2 || ; 1 0 -> 2 || ( ; 1 0 x. A ) ) |
| 17 | 11 16 | ax-mp | |- 2 || ( ; 1 0 x. A ) |
| 18 | 2 | nn0zi | |- B e. ZZ |
| 19 | dvdsmul2 | |- ( ( B e. ZZ /\ 2 e. ZZ ) -> 2 || ( B x. 2 ) ) |
|
| 20 | 18 7 19 | mp2an | |- 2 || ( B x. 2 ) |
| 21 | 20 3 | breqtri | |- 2 || C |
| 22 | 12 1 | nn0mulcli | |- ( ; 1 0 x. A ) e. NN0 |
| 23 | 22 | nn0zi | |- ( ; 1 0 x. A ) e. ZZ |
| 24 | 2nn0 | |- 2 e. NN0 |
|
| 25 | 2 24 | nn0mulcli | |- ( B x. 2 ) e. NN0 |
| 26 | 3 25 | eqeltrri | |- C e. NN0 |
| 27 | 26 | nn0zi | |- C e. ZZ |
| 28 | dvds2add | |- ( ( 2 e. ZZ /\ ( ; 1 0 x. A ) e. ZZ /\ C e. ZZ ) -> ( ( 2 || ( ; 1 0 x. A ) /\ 2 || C ) -> 2 || ( ( ; 1 0 x. A ) + C ) ) ) |
|
| 29 | 7 23 27 28 | mp3an | |- ( ( 2 || ( ; 1 0 x. A ) /\ 2 || C ) -> 2 || ( ( ; 1 0 x. A ) + C ) ) |
| 30 | 17 21 29 | mp2an | |- 2 || ( ( ; 1 0 x. A ) + C ) |
| 31 | dfdec10 | |- ; A C = ( ( ; 1 0 x. A ) + C ) |
|
| 32 | 30 31 | breqtrri | |- 2 || ; A C |
| 33 | 1 26 | deccl | |- ; A C e. NN0 |
| 34 | 33 | nn0zi | |- ; A C e. ZZ |
| 35 | 2nn | |- 2 e. NN |
|
| 36 | 1lt2 | |- 1 < 2 |
|
| 37 | ndvdsp1 | |- ( ( ; A C e. ZZ /\ 2 e. NN /\ 1 < 2 ) -> ( 2 || ; A C -> -. 2 || ( ; A C + 1 ) ) ) |
|
| 38 | 34 35 36 37 | mp3an | |- ( 2 || ; A C -> -. 2 || ( ; A C + 1 ) ) |
| 39 | 32 38 | ax-mp | |- -. 2 || ( ; A C + 1 ) |
| 40 | 4 | eqcomi | |- ( C + 1 ) = D |
| 41 | eqid | |- ; A C = ; A C |
|
| 42 | 1 26 40 41 | decsuc | |- ( ; A C + 1 ) = ; A D |
| 43 | 42 | breq2i | |- ( 2 || ( ; A C + 1 ) <-> 2 || ; A D ) |
| 44 | 39 43 | mtbi | |- -. 2 || ; A D |