This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Divisibility by five is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dec5dvds.1 | ⊢ 𝐴 ∈ ℕ0 | |
| dec5dvds.2 | ⊢ 𝐵 ∈ ℕ | ||
| dec5dvds.3 | ⊢ 𝐵 < 5 | ||
| Assertion | dec5dvds | ⊢ ¬ 5 ∥ ; 𝐴 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dec5dvds.1 | ⊢ 𝐴 ∈ ℕ0 | |
| 2 | dec5dvds.2 | ⊢ 𝐵 ∈ ℕ | |
| 3 | dec5dvds.3 | ⊢ 𝐵 < 5 | |
| 4 | 5nn | ⊢ 5 ∈ ℕ | |
| 5 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 6 | 5 1 | nn0mulcli | ⊢ ( 2 · 𝐴 ) ∈ ℕ0 |
| 7 | 5cn | ⊢ 5 ∈ ℂ | |
| 8 | 2cn | ⊢ 2 ∈ ℂ | |
| 9 | 1 | nn0cni | ⊢ 𝐴 ∈ ℂ |
| 10 | 7 8 9 | mulassi | ⊢ ( ( 5 · 2 ) · 𝐴 ) = ( 5 · ( 2 · 𝐴 ) ) |
| 11 | 5t2e10 | ⊢ ( 5 · 2 ) = ; 1 0 | |
| 12 | 11 | oveq1i | ⊢ ( ( 5 · 2 ) · 𝐴 ) = ( ; 1 0 · 𝐴 ) |
| 13 | 10 12 | eqtr3i | ⊢ ( 5 · ( 2 · 𝐴 ) ) = ( ; 1 0 · 𝐴 ) |
| 14 | 13 | oveq1i | ⊢ ( ( 5 · ( 2 · 𝐴 ) ) + 𝐵 ) = ( ( ; 1 0 · 𝐴 ) + 𝐵 ) |
| 15 | dfdec10 | ⊢ ; 𝐴 𝐵 = ( ( ; 1 0 · 𝐴 ) + 𝐵 ) | |
| 16 | 14 15 | eqtr4i | ⊢ ( ( 5 · ( 2 · 𝐴 ) ) + 𝐵 ) = ; 𝐴 𝐵 |
| 17 | 4 6 2 16 3 | ndvdsi | ⊢ ¬ 5 ∥ ; 𝐴 𝐵 |