This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cyclic groups are isomorphic precisely when they have the same order. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cygctb.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| cygctb.c | ⊢ 𝐶 = ( Base ‘ 𝐻 ) | ||
| Assertion | cyggic | ⊢ ( ( 𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp ) → ( 𝐺 ≃𝑔 𝐻 ↔ 𝐵 ≈ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cygctb.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | cygctb.c | ⊢ 𝐶 = ( Base ‘ 𝐻 ) | |
| 3 | 1 2 | gicen | ⊢ ( 𝐺 ≃𝑔 𝐻 → 𝐵 ≈ 𝐶 ) |
| 4 | eqid | ⊢ if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) | |
| 5 | eqid | ⊢ ( ℤ/nℤ ‘ if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) = ( ℤ/nℤ ‘ if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) | |
| 6 | 1 4 5 | cygzn | ⊢ ( 𝐺 ∈ CycGrp → 𝐺 ≃𝑔 ( ℤ/nℤ ‘ if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ) |
| 7 | 6 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp ) ∧ 𝐵 ≈ 𝐶 ) → 𝐺 ≃𝑔 ( ℤ/nℤ ‘ if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ) |
| 8 | enfi | ⊢ ( 𝐵 ≈ 𝐶 → ( 𝐵 ∈ Fin ↔ 𝐶 ∈ Fin ) ) | |
| 9 | 8 | adantl | ⊢ ( ( ( 𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp ) ∧ 𝐵 ≈ 𝐶 ) → ( 𝐵 ∈ Fin ↔ 𝐶 ∈ Fin ) ) |
| 10 | hasheni | ⊢ ( 𝐵 ≈ 𝐶 → ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐶 ) ) | |
| 11 | 10 | adantl | ⊢ ( ( ( 𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp ) ∧ 𝐵 ≈ 𝐶 ) → ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐶 ) ) |
| 12 | 9 11 | ifbieq1d | ⊢ ( ( ( 𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp ) ∧ 𝐵 ≈ 𝐶 ) → if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) = if ( 𝐶 ∈ Fin , ( ♯ ‘ 𝐶 ) , 0 ) ) |
| 13 | 12 | fveq2d | ⊢ ( ( ( 𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp ) ∧ 𝐵 ≈ 𝐶 ) → ( ℤ/nℤ ‘ if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) = ( ℤ/nℤ ‘ if ( 𝐶 ∈ Fin , ( ♯ ‘ 𝐶 ) , 0 ) ) ) |
| 14 | eqid | ⊢ if ( 𝐶 ∈ Fin , ( ♯ ‘ 𝐶 ) , 0 ) = if ( 𝐶 ∈ Fin , ( ♯ ‘ 𝐶 ) , 0 ) | |
| 15 | eqid | ⊢ ( ℤ/nℤ ‘ if ( 𝐶 ∈ Fin , ( ♯ ‘ 𝐶 ) , 0 ) ) = ( ℤ/nℤ ‘ if ( 𝐶 ∈ Fin , ( ♯ ‘ 𝐶 ) , 0 ) ) | |
| 16 | 2 14 15 | cygzn | ⊢ ( 𝐻 ∈ CycGrp → 𝐻 ≃𝑔 ( ℤ/nℤ ‘ if ( 𝐶 ∈ Fin , ( ♯ ‘ 𝐶 ) , 0 ) ) ) |
| 17 | 16 | ad2antlr | ⊢ ( ( ( 𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp ) ∧ 𝐵 ≈ 𝐶 ) → 𝐻 ≃𝑔 ( ℤ/nℤ ‘ if ( 𝐶 ∈ Fin , ( ♯ ‘ 𝐶 ) , 0 ) ) ) |
| 18 | gicsym | ⊢ ( 𝐻 ≃𝑔 ( ℤ/nℤ ‘ if ( 𝐶 ∈ Fin , ( ♯ ‘ 𝐶 ) , 0 ) ) → ( ℤ/nℤ ‘ if ( 𝐶 ∈ Fin , ( ♯ ‘ 𝐶 ) , 0 ) ) ≃𝑔 𝐻 ) | |
| 19 | 17 18 | syl | ⊢ ( ( ( 𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp ) ∧ 𝐵 ≈ 𝐶 ) → ( ℤ/nℤ ‘ if ( 𝐶 ∈ Fin , ( ♯ ‘ 𝐶 ) , 0 ) ) ≃𝑔 𝐻 ) |
| 20 | 13 19 | eqbrtrd | ⊢ ( ( ( 𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp ) ∧ 𝐵 ≈ 𝐶 ) → ( ℤ/nℤ ‘ if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ≃𝑔 𝐻 ) |
| 21 | gictr | ⊢ ( ( 𝐺 ≃𝑔 ( ℤ/nℤ ‘ if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ∧ ( ℤ/nℤ ‘ if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ≃𝑔 𝐻 ) → 𝐺 ≃𝑔 𝐻 ) | |
| 22 | 7 20 21 | syl2anc | ⊢ ( ( ( 𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp ) ∧ 𝐵 ≈ 𝐶 ) → 𝐺 ≃𝑔 𝐻 ) |
| 23 | 22 | ex | ⊢ ( ( 𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp ) → ( 𝐵 ≈ 𝐶 → 𝐺 ≃𝑔 𝐻 ) ) |
| 24 | 3 23 | impbid2 | ⊢ ( ( 𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp ) → ( 𝐺 ≃𝑔 𝐻 ↔ 𝐵 ≈ 𝐶 ) ) |