This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A cyclic group is countable. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cygctb.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| Assertion | cygctb | ⊢ ( 𝐺 ∈ CycGrp → 𝐵 ≼ ω ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cygctb.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) | |
| 3 | 1 2 | iscyg | ⊢ ( 𝐺 ∈ CycGrp ↔ ( 𝐺 ∈ Grp ∧ ∃ 𝑥 ∈ 𝐵 ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) ) |
| 4 | 3 | simprbi | ⊢ ( 𝐺 ∈ CycGrp → ∃ 𝑥 ∈ 𝐵 ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) |
| 5 | ovex | ⊢ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ∈ V | |
| 6 | eqid | ⊢ ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) | |
| 7 | 5 6 | fnmpti | ⊢ ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) Fn ℤ |
| 8 | df-fo | ⊢ ( ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) : ℤ –onto→ 𝐵 ↔ ( ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) Fn ℤ ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) ) | |
| 9 | 7 8 | mpbiran | ⊢ ( ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) : ℤ –onto→ 𝐵 ↔ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) |
| 10 | omelon | ⊢ ω ∈ On | |
| 11 | onenon | ⊢ ( ω ∈ On → ω ∈ dom card ) | |
| 12 | 10 11 | ax-mp | ⊢ ω ∈ dom card |
| 13 | znnen | ⊢ ℤ ≈ ℕ | |
| 14 | nnenom | ⊢ ℕ ≈ ω | |
| 15 | 13 14 | entri | ⊢ ℤ ≈ ω |
| 16 | ennum | ⊢ ( ℤ ≈ ω → ( ℤ ∈ dom card ↔ ω ∈ dom card ) ) | |
| 17 | 15 16 | ax-mp | ⊢ ( ℤ ∈ dom card ↔ ω ∈ dom card ) |
| 18 | 12 17 | mpbir | ⊢ ℤ ∈ dom card |
| 19 | fodomnum | ⊢ ( ℤ ∈ dom card → ( ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) : ℤ –onto→ 𝐵 → 𝐵 ≼ ℤ ) ) | |
| 20 | 18 19 | mp1i | ⊢ ( ( 𝐺 ∈ CycGrp ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) : ℤ –onto→ 𝐵 → 𝐵 ≼ ℤ ) ) |
| 21 | domentr | ⊢ ( ( 𝐵 ≼ ℤ ∧ ℤ ≈ ω ) → 𝐵 ≼ ω ) | |
| 22 | 15 21 | mpan2 | ⊢ ( 𝐵 ≼ ℤ → 𝐵 ≼ ω ) |
| 23 | 20 22 | syl6 | ⊢ ( ( 𝐺 ∈ CycGrp ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) : ℤ –onto→ 𝐵 → 𝐵 ≼ ω ) ) |
| 24 | 9 23 | biimtrrid | ⊢ ( ( 𝐺 ∈ CycGrp ∧ 𝑥 ∈ 𝐵 ) → ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 → 𝐵 ≼ ω ) ) |
| 25 | 24 | rexlimdva | ⊢ ( 𝐺 ∈ CycGrp → ( ∃ 𝑥 ∈ 𝐵 ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 → 𝐵 ≼ ω ) ) |
| 26 | 4 25 | mpd | ⊢ ( 𝐺 ∈ CycGrp → 𝐵 ≼ ω ) |