This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A cyclic group is countable. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cygctb.1 | |- B = ( Base ` G ) |
|
| Assertion | cygctb | |- ( G e. CycGrp -> B ~<_ _om ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cygctb.1 | |- B = ( Base ` G ) |
|
| 2 | eqid | |- ( .g ` G ) = ( .g ` G ) |
|
| 3 | 1 2 | iscyg | |- ( G e. CycGrp <-> ( G e. Grp /\ E. x e. B ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) ) |
| 4 | 3 | simprbi | |- ( G e. CycGrp -> E. x e. B ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) |
| 5 | ovex | |- ( n ( .g ` G ) x ) e. _V |
|
| 6 | eqid | |- ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = ( n e. ZZ |-> ( n ( .g ` G ) x ) ) |
|
| 7 | 5 6 | fnmpti | |- ( n e. ZZ |-> ( n ( .g ` G ) x ) ) Fn ZZ |
| 8 | df-fo | |- ( ( n e. ZZ |-> ( n ( .g ` G ) x ) ) : ZZ -onto-> B <-> ( ( n e. ZZ |-> ( n ( .g ` G ) x ) ) Fn ZZ /\ ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) ) |
|
| 9 | 7 8 | mpbiran | |- ( ( n e. ZZ |-> ( n ( .g ` G ) x ) ) : ZZ -onto-> B <-> ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) |
| 10 | omelon | |- _om e. On |
|
| 11 | onenon | |- ( _om e. On -> _om e. dom card ) |
|
| 12 | 10 11 | ax-mp | |- _om e. dom card |
| 13 | znnen | |- ZZ ~~ NN |
|
| 14 | nnenom | |- NN ~~ _om |
|
| 15 | 13 14 | entri | |- ZZ ~~ _om |
| 16 | ennum | |- ( ZZ ~~ _om -> ( ZZ e. dom card <-> _om e. dom card ) ) |
|
| 17 | 15 16 | ax-mp | |- ( ZZ e. dom card <-> _om e. dom card ) |
| 18 | 12 17 | mpbir | |- ZZ e. dom card |
| 19 | fodomnum | |- ( ZZ e. dom card -> ( ( n e. ZZ |-> ( n ( .g ` G ) x ) ) : ZZ -onto-> B -> B ~<_ ZZ ) ) |
|
| 20 | 18 19 | mp1i | |- ( ( G e. CycGrp /\ x e. B ) -> ( ( n e. ZZ |-> ( n ( .g ` G ) x ) ) : ZZ -onto-> B -> B ~<_ ZZ ) ) |
| 21 | domentr | |- ( ( B ~<_ ZZ /\ ZZ ~~ _om ) -> B ~<_ _om ) |
|
| 22 | 15 21 | mpan2 | |- ( B ~<_ ZZ -> B ~<_ _om ) |
| 23 | 20 22 | syl6 | |- ( ( G e. CycGrp /\ x e. B ) -> ( ( n e. ZZ |-> ( n ( .g ` G ) x ) ) : ZZ -onto-> B -> B ~<_ _om ) ) |
| 24 | 9 23 | biimtrrid | |- ( ( G e. CycGrp /\ x e. B ) -> ( ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B -> B ~<_ _om ) ) |
| 25 | 24 | rexlimdva | |- ( G e. CycGrp -> ( E. x e. B ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B -> B ~<_ _om ) ) |
| 26 | 4 25 | mpd | |- ( G e. CycGrp -> B ~<_ _om ) |