This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cyclic subgroup generated by A is a cyclic group. (Contributed by Mario Carneiro, 27-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cycsubgcyg2.b | ||
| cycsubgcyg2.k | |||
| Assertion | cycsubgcyg2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cycsubgcyg2.b | ||
| 2 | cycsubgcyg2.k | ||
| 3 | eqid | ||
| 4 | eqid | ||
| 5 | 1 3 4 2 | cycsubg2 | |
| 6 | 5 | oveq2d | |
| 7 | eqid | ||
| 8 | 1 3 7 | cycsubgcyg | |
| 9 | 6 8 | eqeltrd |