This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cyclic subgroup generated by A is a cyclic group. (Contributed by Mario Carneiro, 27-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cycsubgcyg2.b | |- B = ( Base ` G ) |
|
| cycsubgcyg2.k | |- K = ( mrCls ` ( SubGrp ` G ) ) |
||
| Assertion | cycsubgcyg2 | |- ( ( G e. Grp /\ A e. B ) -> ( G |`s ( K ` { A } ) ) e. CycGrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cycsubgcyg2.b | |- B = ( Base ` G ) |
|
| 2 | cycsubgcyg2.k | |- K = ( mrCls ` ( SubGrp ` G ) ) |
|
| 3 | eqid | |- ( .g ` G ) = ( .g ` G ) |
|
| 4 | eqid | |- ( n e. ZZ |-> ( n ( .g ` G ) A ) ) = ( n e. ZZ |-> ( n ( .g ` G ) A ) ) |
|
| 5 | 1 3 4 2 | cycsubg2 | |- ( ( G e. Grp /\ A e. B ) -> ( K ` { A } ) = ran ( n e. ZZ |-> ( n ( .g ` G ) A ) ) ) |
| 6 | 5 | oveq2d | |- ( ( G e. Grp /\ A e. B ) -> ( G |`s ( K ` { A } ) ) = ( G |`s ran ( n e. ZZ |-> ( n ( .g ` G ) A ) ) ) ) |
| 7 | eqid | |- ran ( n e. ZZ |-> ( n ( .g ` G ) A ) ) = ran ( n e. ZZ |-> ( n ( .g ` G ) A ) ) |
|
| 8 | 1 3 7 | cycsubgcyg | |- ( ( G e. Grp /\ A e. B ) -> ( G |`s ran ( n e. ZZ |-> ( n ( .g ` G ) A ) ) ) e. CycGrp ) |
| 9 | 6 8 | eqeltrd | |- ( ( G e. Grp /\ A e. B ) -> ( G |`s ( K ` { A } ) ) e. CycGrp ) |