This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Complex exponentiation is zero iff the base is zero and the exponent is nonzero. (Contributed by Mario Carneiro, 23-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxpeq0 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑𝑐 𝐵 ) = 0 ↔ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cxpne0 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) ≠ 0 ) | |
| 2 | 1 | 3com23 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝐴 ↑𝑐 𝐵 ) ≠ 0 ) |
| 3 | 2 | 3expia | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ≠ 0 → ( 𝐴 ↑𝑐 𝐵 ) ≠ 0 ) ) |
| 4 | 3 | necon4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑𝑐 𝐵 ) = 0 → 𝐴 = 0 ) ) |
| 5 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 6 | cxp0 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑𝑐 0 ) = 1 ) | |
| 7 | 6 | neeq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑𝑐 0 ) ≠ 0 ↔ 1 ≠ 0 ) ) |
| 8 | 5 7 | mpbiri | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑𝑐 0 ) ≠ 0 ) |
| 9 | 8 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 0 ) ≠ 0 ) |
| 10 | oveq2 | ⊢ ( 𝐵 = 0 → ( 𝐴 ↑𝑐 𝐵 ) = ( 𝐴 ↑𝑐 0 ) ) | |
| 11 | 10 | neeq1d | ⊢ ( 𝐵 = 0 → ( ( 𝐴 ↑𝑐 𝐵 ) ≠ 0 ↔ ( 𝐴 ↑𝑐 0 ) ≠ 0 ) ) |
| 12 | 9 11 | syl5ibrcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 = 0 → ( 𝐴 ↑𝑐 𝐵 ) ≠ 0 ) ) |
| 13 | 12 | necon2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑𝑐 𝐵 ) = 0 → 𝐵 ≠ 0 ) ) |
| 14 | 4 13 | jcad | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑𝑐 𝐵 ) = 0 → ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ) |
| 15 | 0cxp | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 0 ↑𝑐 𝐵 ) = 0 ) | |
| 16 | oveq1 | ⊢ ( 𝐴 = 0 → ( 𝐴 ↑𝑐 𝐵 ) = ( 0 ↑𝑐 𝐵 ) ) | |
| 17 | 16 | eqeq1d | ⊢ ( 𝐴 = 0 → ( ( 𝐴 ↑𝑐 𝐵 ) = 0 ↔ ( 0 ↑𝑐 𝐵 ) = 0 ) ) |
| 18 | 15 17 | syl5ibrcom | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 = 0 → ( 𝐴 ↑𝑐 𝐵 ) = 0 ) ) |
| 19 | 18 | expimpd | ⊢ ( 𝐵 ∈ ℂ → ( ( 𝐵 ≠ 0 ∧ 𝐴 = 0 ) → ( 𝐴 ↑𝑐 𝐵 ) = 0 ) ) |
| 20 | 19 | ancomsd | ⊢ ( 𝐵 ∈ ℂ → ( ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) → ( 𝐴 ↑𝑐 𝐵 ) = 0 ) ) |
| 21 | 20 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) → ( 𝐴 ↑𝑐 𝐵 ) = 0 ) ) |
| 22 | 14 21 | impbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑𝑐 𝐵 ) = 0 ↔ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ) |