This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Complex exponentiation is zero iff the base is zero and the exponent is nonzero. (Contributed by Mario Carneiro, 23-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxpeq0 | |- ( ( A e. CC /\ B e. CC ) -> ( ( A ^c B ) = 0 <-> ( A = 0 /\ B =/= 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cxpne0 | |- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( A ^c B ) =/= 0 ) |
|
| 2 | 1 | 3com23 | |- ( ( A e. CC /\ B e. CC /\ A =/= 0 ) -> ( A ^c B ) =/= 0 ) |
| 3 | 2 | 3expia | |- ( ( A e. CC /\ B e. CC ) -> ( A =/= 0 -> ( A ^c B ) =/= 0 ) ) |
| 4 | 3 | necon4d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A ^c B ) = 0 -> A = 0 ) ) |
| 5 | ax-1ne0 | |- 1 =/= 0 |
|
| 6 | cxp0 | |- ( A e. CC -> ( A ^c 0 ) = 1 ) |
|
| 7 | 6 | neeq1d | |- ( A e. CC -> ( ( A ^c 0 ) =/= 0 <-> 1 =/= 0 ) ) |
| 8 | 5 7 | mpbiri | |- ( A e. CC -> ( A ^c 0 ) =/= 0 ) |
| 9 | 8 | adantr | |- ( ( A e. CC /\ B e. CC ) -> ( A ^c 0 ) =/= 0 ) |
| 10 | oveq2 | |- ( B = 0 -> ( A ^c B ) = ( A ^c 0 ) ) |
|
| 11 | 10 | neeq1d | |- ( B = 0 -> ( ( A ^c B ) =/= 0 <-> ( A ^c 0 ) =/= 0 ) ) |
| 12 | 9 11 | syl5ibrcom | |- ( ( A e. CC /\ B e. CC ) -> ( B = 0 -> ( A ^c B ) =/= 0 ) ) |
| 13 | 12 | necon2d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A ^c B ) = 0 -> B =/= 0 ) ) |
| 14 | 4 13 | jcad | |- ( ( A e. CC /\ B e. CC ) -> ( ( A ^c B ) = 0 -> ( A = 0 /\ B =/= 0 ) ) ) |
| 15 | 0cxp | |- ( ( B e. CC /\ B =/= 0 ) -> ( 0 ^c B ) = 0 ) |
|
| 16 | oveq1 | |- ( A = 0 -> ( A ^c B ) = ( 0 ^c B ) ) |
|
| 17 | 16 | eqeq1d | |- ( A = 0 -> ( ( A ^c B ) = 0 <-> ( 0 ^c B ) = 0 ) ) |
| 18 | 15 17 | syl5ibrcom | |- ( ( B e. CC /\ B =/= 0 ) -> ( A = 0 -> ( A ^c B ) = 0 ) ) |
| 19 | 18 | expimpd | |- ( B e. CC -> ( ( B =/= 0 /\ A = 0 ) -> ( A ^c B ) = 0 ) ) |
| 20 | 19 | ancomsd | |- ( B e. CC -> ( ( A = 0 /\ B =/= 0 ) -> ( A ^c B ) = 0 ) ) |
| 21 | 20 | adantl | |- ( ( A e. CC /\ B e. CC ) -> ( ( A = 0 /\ B =/= 0 ) -> ( A ^c B ) = 0 ) ) |
| 22 | 14 21 | impbid | |- ( ( A e. CC /\ B e. CC ) -> ( ( A ^c B ) = 0 <-> ( A = 0 /\ B =/= 0 ) ) ) |