This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Unit group of the scalar ring of a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvsdiv.f | |- F = ( Scalar ` W ) |
|
| cvsdiv.k | |- K = ( Base ` F ) |
||
| Assertion | cvsunit | |- ( W e. CVec -> ( K \ { 0 } ) = ( Unit ` F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvsdiv.f | |- F = ( Scalar ` W ) |
|
| 2 | cvsdiv.k | |- K = ( Base ` F ) |
|
| 3 | id | |- ( W e. CVec -> W e. CVec ) |
|
| 4 | 3 | cvsclm | |- ( W e. CVec -> W e. CMod ) |
| 5 | 1 | clm0 | |- ( W e. CMod -> 0 = ( 0g ` F ) ) |
| 6 | 4 5 | syl | |- ( W e. CVec -> 0 = ( 0g ` F ) ) |
| 7 | 6 | sneqd | |- ( W e. CVec -> { 0 } = { ( 0g ` F ) } ) |
| 8 | 7 | difeq2d | |- ( W e. CVec -> ( K \ { 0 } ) = ( K \ { ( 0g ` F ) } ) ) |
| 9 | 3 | cvslvec | |- ( W e. CVec -> W e. LVec ) |
| 10 | 1 | lvecdrng | |- ( W e. LVec -> F e. DivRing ) |
| 11 | eqid | |- ( Unit ` F ) = ( Unit ` F ) |
|
| 12 | eqid | |- ( 0g ` F ) = ( 0g ` F ) |
|
| 13 | 2 11 12 | isdrng | |- ( F e. DivRing <-> ( F e. Ring /\ ( Unit ` F ) = ( K \ { ( 0g ` F ) } ) ) ) |
| 14 | 13 | simprbi | |- ( F e. DivRing -> ( Unit ` F ) = ( K \ { ( 0g ` F ) } ) ) |
| 15 | 9 10 14 | 3syl | |- ( W e. CVec -> ( Unit ` F ) = ( K \ { ( 0g ` F ) } ) ) |
| 16 | 8 15 | eqtr4d | |- ( W e. CVec -> ( K \ { 0 } ) = ( Unit ` F ) ) |