This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A cyclical shift is the empty set if the number of shifts is not an integer. (Contributed by Alexander van der Vekens, 21-May-2018) (Revised by AV, 17-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cshnz | ⊢ ( ¬ 𝑁 ∈ ℤ → ( 𝑊 cyclShift 𝑁 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-csh | ⊢ cyclShift = ( 𝑤 ∈ { 𝑓 ∣ ∃ 𝑙 ∈ ℕ0 𝑓 Fn ( 0 ..^ 𝑙 ) } , 𝑛 ∈ ℤ ↦ if ( 𝑤 = ∅ , ∅ , ( ( 𝑤 substr 〈 ( 𝑛 mod ( ♯ ‘ 𝑤 ) ) , ( ♯ ‘ 𝑤 ) 〉 ) ++ ( 𝑤 prefix ( 𝑛 mod ( ♯ ‘ 𝑤 ) ) ) ) ) ) | |
| 2 | 0ex | ⊢ ∅ ∈ V | |
| 3 | ovex | ⊢ ( ( 𝑤 substr 〈 ( 𝑛 mod ( ♯ ‘ 𝑤 ) ) , ( ♯ ‘ 𝑤 ) 〉 ) ++ ( 𝑤 prefix ( 𝑛 mod ( ♯ ‘ 𝑤 ) ) ) ) ∈ V | |
| 4 | 2 3 | ifex | ⊢ if ( 𝑤 = ∅ , ∅ , ( ( 𝑤 substr 〈 ( 𝑛 mod ( ♯ ‘ 𝑤 ) ) , ( ♯ ‘ 𝑤 ) 〉 ) ++ ( 𝑤 prefix ( 𝑛 mod ( ♯ ‘ 𝑤 ) ) ) ) ) ∈ V |
| 5 | 1 4 | dmmpo | ⊢ dom cyclShift = ( { 𝑓 ∣ ∃ 𝑙 ∈ ℕ0 𝑓 Fn ( 0 ..^ 𝑙 ) } × ℤ ) |
| 6 | id | ⊢ ( ¬ 𝑁 ∈ ℤ → ¬ 𝑁 ∈ ℤ ) | |
| 7 | 6 | intnand | ⊢ ( ¬ 𝑁 ∈ ℤ → ¬ ( 𝑊 ∈ { 𝑓 ∣ ∃ 𝑙 ∈ ℕ0 𝑓 Fn ( 0 ..^ 𝑙 ) } ∧ 𝑁 ∈ ℤ ) ) |
| 8 | ndmovg | ⊢ ( ( dom cyclShift = ( { 𝑓 ∣ ∃ 𝑙 ∈ ℕ0 𝑓 Fn ( 0 ..^ 𝑙 ) } × ℤ ) ∧ ¬ ( 𝑊 ∈ { 𝑓 ∣ ∃ 𝑙 ∈ ℕ0 𝑓 Fn ( 0 ..^ 𝑙 ) } ∧ 𝑁 ∈ ℤ ) ) → ( 𝑊 cyclShift 𝑁 ) = ∅ ) | |
| 9 | 5 7 8 | sylancr | ⊢ ( ¬ 𝑁 ∈ ℤ → ( 𝑊 cyclShift 𝑁 ) = ∅ ) |