This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The symbol at a given index of a cyclically shifted nonempty word is the symbol at the shifted index of the original word. (Contributed by AV, 17-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cshwidxmodr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 𝑁 ) ‘ ( ( 𝐼 − 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ 𝐼 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzo0 | ⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) ) | |
| 2 | nn0z | ⊢ ( 𝐼 ∈ ℕ0 → 𝐼 ∈ ℤ ) | |
| 3 | 2 | 3ad2ant1 | ⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) → 𝐼 ∈ ℤ ) |
| 4 | zsubcl | ⊢ ( ( 𝐼 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐼 − 𝑁 ) ∈ ℤ ) | |
| 5 | 3 4 | sylan | ⊢ ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) ∧ 𝑁 ∈ ℤ ) → ( 𝐼 − 𝑁 ) ∈ ℤ ) |
| 6 | simpl2 | ⊢ ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) ∧ 𝑁 ∈ ℤ ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) | |
| 7 | 5 6 | jca | ⊢ ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) ∧ 𝑁 ∈ ℤ ) → ( ( 𝐼 − 𝑁 ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) |
| 8 | 7 | ex | ⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) → ( 𝑁 ∈ ℤ → ( ( 𝐼 − 𝑁 ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) ) |
| 9 | 1 8 | sylbi | ⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( 𝑁 ∈ ℤ → ( ( 𝐼 − 𝑁 ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) ) |
| 10 | 9 | impcom | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐼 − 𝑁 ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) |
| 11 | 10 | 3adant1 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐼 − 𝑁 ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) |
| 12 | zmodfzo | ⊢ ( ( ( 𝐼 − 𝑁 ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) → ( ( 𝐼 − 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | |
| 13 | 11 12 | syl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐼 − 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 14 | cshwidxmod | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ ( ( 𝐼 − 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 𝑁 ) ‘ ( ( 𝐼 − 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ ( ( ( ( 𝐼 − 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) ) | |
| 15 | 13 14 | syld3an3 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 𝑁 ) ‘ ( ( 𝐼 − 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ ( ( ( ( 𝐼 − 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 16 | elfzoelz | ⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → 𝐼 ∈ ℤ ) | |
| 17 | 16 | adantl | ⊢ ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝐼 ∈ ℤ ) |
| 18 | 17 4 | sylan | ⊢ ( ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ 𝑁 ∈ ℤ ) → ( 𝐼 − 𝑁 ) ∈ ℤ ) |
| 19 | 18 | zred | ⊢ ( ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ 𝑁 ∈ ℤ ) → ( 𝐼 − 𝑁 ) ∈ ℝ ) |
| 20 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 21 | 20 | adantl | ⊢ ( ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℝ ) |
| 22 | nnrp | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) | |
| 23 | 22 | ad3antlr | ⊢ ( ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ 𝑁 ∈ ℤ ) → ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) |
| 24 | modaddmod | ⊢ ( ( ( 𝐼 − 𝑁 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) → ( ( ( ( 𝐼 − 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( ( 𝐼 − 𝑁 ) + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) | |
| 25 | 19 21 23 24 | syl3anc | ⊢ ( ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ 𝑁 ∈ ℤ ) → ( ( ( ( 𝐼 − 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( ( 𝐼 − 𝑁 ) + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) |
| 26 | nn0cn | ⊢ ( 𝐼 ∈ ℕ0 → 𝐼 ∈ ℂ ) | |
| 27 | 26 | ad2antrr | ⊢ ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝐼 ∈ ℂ ) |
| 28 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 29 | npcan | ⊢ ( ( 𝐼 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( ( 𝐼 − 𝑁 ) + 𝑁 ) = 𝐼 ) | |
| 30 | 27 28 29 | syl2an | ⊢ ( ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ 𝑁 ∈ ℤ ) → ( ( 𝐼 − 𝑁 ) + 𝑁 ) = 𝐼 ) |
| 31 | 30 | oveq1d | ⊢ ( ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ 𝑁 ∈ ℤ ) → ( ( ( 𝐼 − 𝑁 ) + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) = ( 𝐼 mod ( ♯ ‘ 𝑊 ) ) ) |
| 32 | zmodidfzoimp | ⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( 𝐼 mod ( ♯ ‘ 𝑊 ) ) = 𝐼 ) | |
| 33 | 32 | ad2antlr | ⊢ ( ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ 𝑁 ∈ ℤ ) → ( 𝐼 mod ( ♯ ‘ 𝑊 ) ) = 𝐼 ) |
| 34 | 25 31 33 | 3eqtrd | ⊢ ( ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ 𝑁 ∈ ℤ ) → ( ( ( ( 𝐼 − 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) = 𝐼 ) |
| 35 | 34 | fveq2d | ⊢ ( ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ 𝑁 ∈ ℤ ) → ( 𝑊 ‘ ( ( ( ( 𝐼 − 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ 𝐼 ) ) |
| 36 | 35 | ex | ⊢ ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑁 ∈ ℤ → ( 𝑊 ‘ ( ( ( ( 𝐼 − 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ 𝐼 ) ) ) |
| 37 | 36 | ex | ⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) → ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( 𝑁 ∈ ℤ → ( 𝑊 ‘ ( ( ( ( 𝐼 − 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ 𝐼 ) ) ) ) |
| 38 | 37 | 3adant3 | ⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) → ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( 𝑁 ∈ ℤ → ( 𝑊 ‘ ( ( ( ( 𝐼 − 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ 𝐼 ) ) ) ) |
| 39 | 1 38 | sylbi | ⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( 𝑁 ∈ ℤ → ( 𝑊 ‘ ( ( ( ( 𝐼 − 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ 𝐼 ) ) ) ) |
| 40 | 39 | pm2.43i | ⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( 𝑁 ∈ ℤ → ( 𝑊 ‘ ( ( ( ( 𝐼 − 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ 𝐼 ) ) ) |
| 41 | 40 | impcom | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ ( ( ( ( 𝐼 − 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ 𝐼 ) ) |
| 42 | 41 | 3adant1 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ ( ( ( ( 𝐼 − 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ 𝐼 ) ) |
| 43 | 15 42 | eqtrd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 𝑁 ) ‘ ( ( 𝐼 − 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ 𝐼 ) ) |