This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The symbol at a given index of a cyclically shifted nonempty word is the symbol at the shifted index of the original word. (Contributed by AV, 17-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cshwidxmodr | |- ( ( W e. Word V /\ N e. ZZ /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W cyclShift N ) ` ( ( I - N ) mod ( # ` W ) ) ) = ( W ` I ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzo0 | |- ( I e. ( 0 ..^ ( # ` W ) ) <-> ( I e. NN0 /\ ( # ` W ) e. NN /\ I < ( # ` W ) ) ) |
|
| 2 | nn0z | |- ( I e. NN0 -> I e. ZZ ) |
|
| 3 | 2 | 3ad2ant1 | |- ( ( I e. NN0 /\ ( # ` W ) e. NN /\ I < ( # ` W ) ) -> I e. ZZ ) |
| 4 | zsubcl | |- ( ( I e. ZZ /\ N e. ZZ ) -> ( I - N ) e. ZZ ) |
|
| 5 | 3 4 | sylan | |- ( ( ( I e. NN0 /\ ( # ` W ) e. NN /\ I < ( # ` W ) ) /\ N e. ZZ ) -> ( I - N ) e. ZZ ) |
| 6 | simpl2 | |- ( ( ( I e. NN0 /\ ( # ` W ) e. NN /\ I < ( # ` W ) ) /\ N e. ZZ ) -> ( # ` W ) e. NN ) |
|
| 7 | 5 6 | jca | |- ( ( ( I e. NN0 /\ ( # ` W ) e. NN /\ I < ( # ` W ) ) /\ N e. ZZ ) -> ( ( I - N ) e. ZZ /\ ( # ` W ) e. NN ) ) |
| 8 | 7 | ex | |- ( ( I e. NN0 /\ ( # ` W ) e. NN /\ I < ( # ` W ) ) -> ( N e. ZZ -> ( ( I - N ) e. ZZ /\ ( # ` W ) e. NN ) ) ) |
| 9 | 1 8 | sylbi | |- ( I e. ( 0 ..^ ( # ` W ) ) -> ( N e. ZZ -> ( ( I - N ) e. ZZ /\ ( # ` W ) e. NN ) ) ) |
| 10 | 9 | impcom | |- ( ( N e. ZZ /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( ( I - N ) e. ZZ /\ ( # ` W ) e. NN ) ) |
| 11 | 10 | 3adant1 | |- ( ( W e. Word V /\ N e. ZZ /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( ( I - N ) e. ZZ /\ ( # ` W ) e. NN ) ) |
| 12 | zmodfzo | |- ( ( ( I - N ) e. ZZ /\ ( # ` W ) e. NN ) -> ( ( I - N ) mod ( # ` W ) ) e. ( 0 ..^ ( # ` W ) ) ) |
|
| 13 | 11 12 | syl | |- ( ( W e. Word V /\ N e. ZZ /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( ( I - N ) mod ( # ` W ) ) e. ( 0 ..^ ( # ` W ) ) ) |
| 14 | cshwidxmod | |- ( ( W e. Word V /\ N e. ZZ /\ ( ( I - N ) mod ( # ` W ) ) e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W cyclShift N ) ` ( ( I - N ) mod ( # ` W ) ) ) = ( W ` ( ( ( ( I - N ) mod ( # ` W ) ) + N ) mod ( # ` W ) ) ) ) |
|
| 15 | 13 14 | syld3an3 | |- ( ( W e. Word V /\ N e. ZZ /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W cyclShift N ) ` ( ( I - N ) mod ( # ` W ) ) ) = ( W ` ( ( ( ( I - N ) mod ( # ` W ) ) + N ) mod ( # ` W ) ) ) ) |
| 16 | elfzoelz | |- ( I e. ( 0 ..^ ( # ` W ) ) -> I e. ZZ ) |
|
| 17 | 16 | adantl | |- ( ( ( I e. NN0 /\ ( # ` W ) e. NN ) /\ I e. ( 0 ..^ ( # ` W ) ) ) -> I e. ZZ ) |
| 18 | 17 4 | sylan | |- ( ( ( ( I e. NN0 /\ ( # ` W ) e. NN ) /\ I e. ( 0 ..^ ( # ` W ) ) ) /\ N e. ZZ ) -> ( I - N ) e. ZZ ) |
| 19 | 18 | zred | |- ( ( ( ( I e. NN0 /\ ( # ` W ) e. NN ) /\ I e. ( 0 ..^ ( # ` W ) ) ) /\ N e. ZZ ) -> ( I - N ) e. RR ) |
| 20 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 21 | 20 | adantl | |- ( ( ( ( I e. NN0 /\ ( # ` W ) e. NN ) /\ I e. ( 0 ..^ ( # ` W ) ) ) /\ N e. ZZ ) -> N e. RR ) |
| 22 | nnrp | |- ( ( # ` W ) e. NN -> ( # ` W ) e. RR+ ) |
|
| 23 | 22 | ad3antlr | |- ( ( ( ( I e. NN0 /\ ( # ` W ) e. NN ) /\ I e. ( 0 ..^ ( # ` W ) ) ) /\ N e. ZZ ) -> ( # ` W ) e. RR+ ) |
| 24 | modaddmod | |- ( ( ( I - N ) e. RR /\ N e. RR /\ ( # ` W ) e. RR+ ) -> ( ( ( ( I - N ) mod ( # ` W ) ) + N ) mod ( # ` W ) ) = ( ( ( I - N ) + N ) mod ( # ` W ) ) ) |
|
| 25 | 19 21 23 24 | syl3anc | |- ( ( ( ( I e. NN0 /\ ( # ` W ) e. NN ) /\ I e. ( 0 ..^ ( # ` W ) ) ) /\ N e. ZZ ) -> ( ( ( ( I - N ) mod ( # ` W ) ) + N ) mod ( # ` W ) ) = ( ( ( I - N ) + N ) mod ( # ` W ) ) ) |
| 26 | nn0cn | |- ( I e. NN0 -> I e. CC ) |
|
| 27 | 26 | ad2antrr | |- ( ( ( I e. NN0 /\ ( # ` W ) e. NN ) /\ I e. ( 0 ..^ ( # ` W ) ) ) -> I e. CC ) |
| 28 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 29 | npcan | |- ( ( I e. CC /\ N e. CC ) -> ( ( I - N ) + N ) = I ) |
|
| 30 | 27 28 29 | syl2an | |- ( ( ( ( I e. NN0 /\ ( # ` W ) e. NN ) /\ I e. ( 0 ..^ ( # ` W ) ) ) /\ N e. ZZ ) -> ( ( I - N ) + N ) = I ) |
| 31 | 30 | oveq1d | |- ( ( ( ( I e. NN0 /\ ( # ` W ) e. NN ) /\ I e. ( 0 ..^ ( # ` W ) ) ) /\ N e. ZZ ) -> ( ( ( I - N ) + N ) mod ( # ` W ) ) = ( I mod ( # ` W ) ) ) |
| 32 | zmodidfzoimp | |- ( I e. ( 0 ..^ ( # ` W ) ) -> ( I mod ( # ` W ) ) = I ) |
|
| 33 | 32 | ad2antlr | |- ( ( ( ( I e. NN0 /\ ( # ` W ) e. NN ) /\ I e. ( 0 ..^ ( # ` W ) ) ) /\ N e. ZZ ) -> ( I mod ( # ` W ) ) = I ) |
| 34 | 25 31 33 | 3eqtrd | |- ( ( ( ( I e. NN0 /\ ( # ` W ) e. NN ) /\ I e. ( 0 ..^ ( # ` W ) ) ) /\ N e. ZZ ) -> ( ( ( ( I - N ) mod ( # ` W ) ) + N ) mod ( # ` W ) ) = I ) |
| 35 | 34 | fveq2d | |- ( ( ( ( I e. NN0 /\ ( # ` W ) e. NN ) /\ I e. ( 0 ..^ ( # ` W ) ) ) /\ N e. ZZ ) -> ( W ` ( ( ( ( I - N ) mod ( # ` W ) ) + N ) mod ( # ` W ) ) ) = ( W ` I ) ) |
| 36 | 35 | ex | |- ( ( ( I e. NN0 /\ ( # ` W ) e. NN ) /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( N e. ZZ -> ( W ` ( ( ( ( I - N ) mod ( # ` W ) ) + N ) mod ( # ` W ) ) ) = ( W ` I ) ) ) |
| 37 | 36 | ex | |- ( ( I e. NN0 /\ ( # ` W ) e. NN ) -> ( I e. ( 0 ..^ ( # ` W ) ) -> ( N e. ZZ -> ( W ` ( ( ( ( I - N ) mod ( # ` W ) ) + N ) mod ( # ` W ) ) ) = ( W ` I ) ) ) ) |
| 38 | 37 | 3adant3 | |- ( ( I e. NN0 /\ ( # ` W ) e. NN /\ I < ( # ` W ) ) -> ( I e. ( 0 ..^ ( # ` W ) ) -> ( N e. ZZ -> ( W ` ( ( ( ( I - N ) mod ( # ` W ) ) + N ) mod ( # ` W ) ) ) = ( W ` I ) ) ) ) |
| 39 | 1 38 | sylbi | |- ( I e. ( 0 ..^ ( # ` W ) ) -> ( I e. ( 0 ..^ ( # ` W ) ) -> ( N e. ZZ -> ( W ` ( ( ( ( I - N ) mod ( # ` W ) ) + N ) mod ( # ` W ) ) ) = ( W ` I ) ) ) ) |
| 40 | 39 | pm2.43i | |- ( I e. ( 0 ..^ ( # ` W ) ) -> ( N e. ZZ -> ( W ` ( ( ( ( I - N ) mod ( # ` W ) ) + N ) mod ( # ` W ) ) ) = ( W ` I ) ) ) |
| 41 | 40 | impcom | |- ( ( N e. ZZ /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` ( ( ( ( I - N ) mod ( # ` W ) ) + N ) mod ( # ` W ) ) ) = ( W ` I ) ) |
| 42 | 41 | 3adant1 | |- ( ( W e. Word V /\ N e. ZZ /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` ( ( ( ( I - N ) mod ( # ` W ) ) + N ) mod ( # ` W ) ) ) = ( W ` I ) ) |
| 43 | 15 42 | eqtrd | |- ( ( W e. Word V /\ N e. ZZ /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W cyclShift N ) ` ( ( I - N ) mod ( # ` W ) ) ) = ( W ` I ) ) |