This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A cyclical shift is the empty set if the number of shifts is not an integer. (Contributed by Alexander van der Vekens, 21-May-2018) (Revised by AV, 17-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cshnz | |- ( -. N e. ZZ -> ( W cyclShift N ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-csh | |- cyclShift = ( w e. { f | E. l e. NN0 f Fn ( 0 ..^ l ) } , n e. ZZ |-> if ( w = (/) , (/) , ( ( w substr <. ( n mod ( # ` w ) ) , ( # ` w ) >. ) ++ ( w prefix ( n mod ( # ` w ) ) ) ) ) ) |
|
| 2 | 0ex | |- (/) e. _V |
|
| 3 | ovex | |- ( ( w substr <. ( n mod ( # ` w ) ) , ( # ` w ) >. ) ++ ( w prefix ( n mod ( # ` w ) ) ) ) e. _V |
|
| 4 | 2 3 | ifex | |- if ( w = (/) , (/) , ( ( w substr <. ( n mod ( # ` w ) ) , ( # ` w ) >. ) ++ ( w prefix ( n mod ( # ` w ) ) ) ) ) e. _V |
| 5 | 1 4 | dmmpo | |- dom cyclShift = ( { f | E. l e. NN0 f Fn ( 0 ..^ l ) } X. ZZ ) |
| 6 | id | |- ( -. N e. ZZ -> -. N e. ZZ ) |
|
| 7 | 6 | intnand | |- ( -. N e. ZZ -> -. ( W e. { f | E. l e. NN0 f Fn ( 0 ..^ l ) } /\ N e. ZZ ) ) |
| 8 | ndmovg | |- ( ( dom cyclShift = ( { f | E. l e. NN0 f Fn ( 0 ..^ l ) } X. ZZ ) /\ -. ( W e. { f | E. l e. NN0 f Fn ( 0 ..^ l ) } /\ N e. ZZ ) ) -> ( W cyclShift N ) = (/) ) |
|
| 9 | 5 7 8 | sylancr | |- ( -. N e. ZZ -> ( W cyclShift N ) = (/) ) |