This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Perform a cyclical shift for an arbitrary class. Meaningful only for words w e. Word S or at least functions over half-open ranges of nonnegative integers. (Contributed by Alexander van der Vekens, 20-May-2018) (Revised by Mario Carneiro/Alexander van der Vekens/ Gerard Lang, 17-Nov-2018) (Revised by AV, 4-Nov-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-csh | ⊢ cyclShift = ( 𝑤 ∈ { 𝑓 ∣ ∃ 𝑙 ∈ ℕ0 𝑓 Fn ( 0 ..^ 𝑙 ) } , 𝑛 ∈ ℤ ↦ if ( 𝑤 = ∅ , ∅ , ( ( 𝑤 substr 〈 ( 𝑛 mod ( ♯ ‘ 𝑤 ) ) , ( ♯ ‘ 𝑤 ) 〉 ) ++ ( 𝑤 prefix ( 𝑛 mod ( ♯ ‘ 𝑤 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccsh | ⊢ cyclShift | |
| 1 | vw | ⊢ 𝑤 | |
| 2 | vf | ⊢ 𝑓 | |
| 3 | vl | ⊢ 𝑙 | |
| 4 | cn0 | ⊢ ℕ0 | |
| 5 | 2 | cv | ⊢ 𝑓 |
| 6 | cc0 | ⊢ 0 | |
| 7 | cfzo | ⊢ ..^ | |
| 8 | 3 | cv | ⊢ 𝑙 |
| 9 | 6 8 7 | co | ⊢ ( 0 ..^ 𝑙 ) |
| 10 | 5 9 | wfn | ⊢ 𝑓 Fn ( 0 ..^ 𝑙 ) |
| 11 | 10 3 4 | wrex | ⊢ ∃ 𝑙 ∈ ℕ0 𝑓 Fn ( 0 ..^ 𝑙 ) |
| 12 | 11 2 | cab | ⊢ { 𝑓 ∣ ∃ 𝑙 ∈ ℕ0 𝑓 Fn ( 0 ..^ 𝑙 ) } |
| 13 | vn | ⊢ 𝑛 | |
| 14 | cz | ⊢ ℤ | |
| 15 | 1 | cv | ⊢ 𝑤 |
| 16 | c0 | ⊢ ∅ | |
| 17 | 15 16 | wceq | ⊢ 𝑤 = ∅ |
| 18 | csubstr | ⊢ substr | |
| 19 | 13 | cv | ⊢ 𝑛 |
| 20 | cmo | ⊢ mod | |
| 21 | chash | ⊢ ♯ | |
| 22 | 15 21 | cfv | ⊢ ( ♯ ‘ 𝑤 ) |
| 23 | 19 22 20 | co | ⊢ ( 𝑛 mod ( ♯ ‘ 𝑤 ) ) |
| 24 | 23 22 | cop | ⊢ 〈 ( 𝑛 mod ( ♯ ‘ 𝑤 ) ) , ( ♯ ‘ 𝑤 ) 〉 |
| 25 | 15 24 18 | co | ⊢ ( 𝑤 substr 〈 ( 𝑛 mod ( ♯ ‘ 𝑤 ) ) , ( ♯ ‘ 𝑤 ) 〉 ) |
| 26 | cconcat | ⊢ ++ | |
| 27 | cpfx | ⊢ prefix | |
| 28 | 15 23 27 | co | ⊢ ( 𝑤 prefix ( 𝑛 mod ( ♯ ‘ 𝑤 ) ) ) |
| 29 | 25 28 26 | co | ⊢ ( ( 𝑤 substr 〈 ( 𝑛 mod ( ♯ ‘ 𝑤 ) ) , ( ♯ ‘ 𝑤 ) 〉 ) ++ ( 𝑤 prefix ( 𝑛 mod ( ♯ ‘ 𝑤 ) ) ) ) |
| 30 | 17 16 29 | cif | ⊢ if ( 𝑤 = ∅ , ∅ , ( ( 𝑤 substr 〈 ( 𝑛 mod ( ♯ ‘ 𝑤 ) ) , ( ♯ ‘ 𝑤 ) 〉 ) ++ ( 𝑤 prefix ( 𝑛 mod ( ♯ ‘ 𝑤 ) ) ) ) ) |
| 31 | 1 13 12 14 30 | cmpo | ⊢ ( 𝑤 ∈ { 𝑓 ∣ ∃ 𝑙 ∈ ℕ0 𝑓 Fn ( 0 ..^ 𝑙 ) } , 𝑛 ∈ ℤ ↦ if ( 𝑤 = ∅ , ∅ , ( ( 𝑤 substr 〈 ( 𝑛 mod ( ♯ ‘ 𝑤 ) ) , ( ♯ ‘ 𝑤 ) 〉 ) ++ ( 𝑤 prefix ( 𝑛 mod ( ♯ ‘ 𝑤 ) ) ) ) ) ) |
| 32 | 0 31 | wceq | ⊢ cyclShift = ( 𝑤 ∈ { 𝑓 ∣ ∃ 𝑙 ∈ ℕ0 𝑓 Fn ( 0 ..^ 𝑙 ) } , 𝑛 ∈ ℤ ↦ if ( 𝑤 = ∅ , ∅ , ( ( 𝑤 substr 〈 ( 𝑛 mod ( ♯ ‘ 𝑤 ) ) , ( ♯ ‘ 𝑤 ) 〉 ) ++ ( 𝑤 prefix ( 𝑛 mod ( ♯ ‘ 𝑤 ) ) ) ) ) ) |