This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Move class substitution in and out of the well-founded recursive function generator. (Contributed by ML, 25-Oct-2020) (Revised by Scott Fenton, 18-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbwrecsg | ⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ wrecs ( 𝑅 , 𝐷 , 𝐹 ) = wrecs ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbfrecsg | ⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ frecs ( 𝑅 , 𝐷 , ( 𝐹 ∘ 2nd ) ) = frecs ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , ⦋ 𝐴 / 𝑥 ⦌ ( 𝐹 ∘ 2nd ) ) ) | |
| 2 | eqid | ⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝑅 = ⦋ 𝐴 / 𝑥 ⦌ 𝑅 | |
| 3 | eqid | ⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 = ⦋ 𝐴 / 𝑥 ⦌ 𝐷 | |
| 4 | csbcog | ⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ ( 𝐹 ∘ 2nd ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ∘ ⦋ 𝐴 / 𝑥 ⦌ 2nd ) ) | |
| 5 | csbconstg | ⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ 2nd = 2nd ) | |
| 6 | 5 | coeq2d | ⊢ ( 𝐴 ∈ 𝑉 → ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ∘ ⦋ 𝐴 / 𝑥 ⦌ 2nd ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ∘ 2nd ) ) |
| 7 | 4 6 | eqtrd | ⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ ( 𝐹 ∘ 2nd ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ∘ 2nd ) ) |
| 8 | frecseq123 | ⊢ ( ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 = ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ∧ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 = ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ∧ ⦋ 𝐴 / 𝑥 ⦌ ( 𝐹 ∘ 2nd ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ∘ 2nd ) ) → frecs ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , ⦋ 𝐴 / 𝑥 ⦌ ( 𝐹 ∘ 2nd ) ) = frecs ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ∘ 2nd ) ) ) | |
| 9 | 2 3 7 8 | mp3an12i | ⊢ ( 𝐴 ∈ 𝑉 → frecs ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , ⦋ 𝐴 / 𝑥 ⦌ ( 𝐹 ∘ 2nd ) ) = frecs ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ∘ 2nd ) ) ) |
| 10 | 1 9 | eqtrd | ⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ frecs ( 𝑅 , 𝐷 , ( 𝐹 ∘ 2nd ) ) = frecs ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ∘ 2nd ) ) ) |
| 11 | df-wrecs | ⊢ wrecs ( 𝑅 , 𝐷 , 𝐹 ) = frecs ( 𝑅 , 𝐷 , ( 𝐹 ∘ 2nd ) ) | |
| 12 | 11 | csbeq2i | ⊢ ⦋ 𝐴 / 𝑥 ⦌ wrecs ( 𝑅 , 𝐷 , 𝐹 ) = ⦋ 𝐴 / 𝑥 ⦌ frecs ( 𝑅 , 𝐷 , ( 𝐹 ∘ 2nd ) ) |
| 13 | df-wrecs | ⊢ wrecs ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ) = frecs ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ∘ 2nd ) ) | |
| 14 | 10 12 13 | 3eqtr4g | ⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ wrecs ( 𝑅 , 𝐷 , 𝐹 ) = wrecs ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ) ) |