This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functions defined by well-ordered recursion are identical up to relation, domain, and characteristic function. (Contributed by Scott Fenton, 11-Feb-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wfr3g | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ∧ ( 𝐺 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → 𝐹 = 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.26 | ⊢ ( ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ↔ ( ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) | |
| 2 | fveq2 | ⊢ ( 𝑧 = 𝑤 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) | |
| 3 | fveq2 | ⊢ ( 𝑧 = 𝑤 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑤 ) ) | |
| 4 | 2 3 | eqeq12d | ⊢ ( 𝑧 = 𝑤 → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) |
| 5 | 4 | imbi2d | ⊢ ( 𝑧 = 𝑤 → ( ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ↔ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) |
| 6 | ra4v | ⊢ ( ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) → ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) | |
| 7 | fveq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 8 | predeq3 | ⊢ ( 𝑦 = 𝑧 → Pred ( 𝑅 , 𝐴 , 𝑦 ) = Pred ( 𝑅 , 𝐴 , 𝑧 ) ) | |
| 9 | 8 | reseq2d | ⊢ ( 𝑦 = 𝑧 → ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) = ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
| 10 | 9 | fveq2d | ⊢ ( 𝑦 = 𝑧 → ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) |
| 11 | 7 10 | eqeq12d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ( 𝐹 ‘ 𝑧 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) |
| 12 | fveq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑧 ) ) | |
| 13 | 8 | reseq2d | ⊢ ( 𝑦 = 𝑧 → ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) = ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
| 14 | 13 | fveq2d | ⊢ ( 𝑦 = 𝑧 → ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) |
| 15 | 12 14 | eqeq12d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝐺 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ( 𝐺 ‘ 𝑧 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) |
| 16 | 11 15 | anbi12d | ⊢ ( 𝑦 = 𝑧 → ( ( ( 𝐹 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ↔ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) ) |
| 17 | 16 | rspcva | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) |
| 18 | eqtr3 | ⊢ ( ( ( 𝐹 ‘ 𝑧 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∧ ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) | |
| 19 | 18 | ancoms | ⊢ ( ( ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) |
| 20 | eqtr3 | ⊢ ( ( ( 𝐹 ‘ 𝑧 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) | |
| 21 | 20 | ex | ⊢ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) → ( ( 𝐺 ‘ 𝑧 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) |
| 22 | 19 21 | syl | ⊢ ( ( ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) → ( ( 𝐺 ‘ 𝑧 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) |
| 23 | 22 | expimpd | ⊢ ( ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) → ( ( ( 𝐹 ‘ 𝑧 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) |
| 24 | predss | ⊢ Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝐴 | |
| 25 | fvreseq | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝐴 ) → ( ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ↔ ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) | |
| 26 | 24 25 | mpan2 | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ↔ ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) |
| 27 | 26 | biimpar | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) → ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
| 28 | 27 | eqcomd | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) → ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
| 29 | 28 | fveq2d | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) → ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) |
| 30 | 23 29 | syl11 | ⊢ ( ( ( 𝐹 ‘ 𝑧 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) → ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) |
| 31 | 30 | expd | ⊢ ( ( ( 𝐹 ‘ 𝑧 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) → ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 32 | 17 31 | syl | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 33 | 32 | ex | ⊢ ( 𝑧 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) → ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) ) |
| 34 | 33 | impcomd | ⊢ ( 𝑧 ∈ 𝐴 → ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 35 | 34 | a2d | ⊢ ( 𝑧 ∈ 𝐴 → ( ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) → ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 36 | 6 35 | syl5 | ⊢ ( 𝑧 ∈ 𝐴 → ( ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) → ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 37 | 5 36 | wfis2g | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → ∀ 𝑧 ∈ 𝐴 ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) |
| 38 | r19.21v | ⊢ ( ∀ 𝑧 ∈ 𝐴 ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ↔ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ∀ 𝑧 ∈ 𝐴 ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) | |
| 39 | 37 38 | sylib | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ∀ 𝑧 ∈ 𝐴 ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) |
| 40 | 39 | com12 | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → ∀ 𝑧 ∈ 𝐴 ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) |
| 41 | 1 40 | sylan2br | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → ∀ 𝑧 ∈ 𝐴 ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) |
| 42 | 41 | an4s | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ∧ ( 𝐺 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → ∀ 𝑧 ∈ 𝐴 ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) |
| 43 | 42 | com12 | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ∧ ( 𝐺 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ∀ 𝑧 ∈ 𝐴 ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) |
| 44 | 43 | 3impib | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ∧ ( 𝐺 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ∀ 𝑧 ∈ 𝐴 ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) |
| 45 | eqid | ⊢ 𝐴 = 𝐴 | |
| 46 | 44 45 | jctil | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ∧ ( 𝐺 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐴 = 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) |
| 47 | eqfnfv2 | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( 𝐹 = 𝐺 ↔ ( 𝐴 = 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) | |
| 48 | 47 | ad2ant2r | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ∧ ( 𝐺 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹 = 𝐺 ↔ ( 𝐴 = 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 49 | 48 | 3adant1 | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ∧ ( 𝐺 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹 = 𝐺 ↔ ( 𝐴 = 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 50 | 46 49 | mpbird | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ∧ ( 𝐺 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → 𝐹 = 𝐺 ) |