This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative/associative law that swaps the first two factors in a triple product in a commutative ring. See also mul12d . (Contributed by SN, 8-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | crng12d.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| crng12d.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| crng12d.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| crng12d.1 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| crng12d.2 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| crng12d.3 | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| Assertion | crng12d | ⊢ ( 𝜑 → ( 𝑋 · ( 𝑌 · 𝑍 ) ) = ( 𝑌 · ( 𝑋 · 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crng12d.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | crng12d.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | crng12d.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 4 | crng12d.1 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | crng12d.2 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | crng12d.3 | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 7 | 1 2 3 4 5 | crngcomd | ⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) = ( 𝑌 · 𝑋 ) ) |
| 8 | 7 | oveq1d | ⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) · 𝑍 ) = ( ( 𝑌 · 𝑋 ) · 𝑍 ) ) |
| 9 | 3 | crngringd | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 10 | 1 2 9 4 5 6 | ringassd | ⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) · 𝑍 ) = ( 𝑋 · ( 𝑌 · 𝑍 ) ) ) |
| 11 | 1 2 9 5 4 6 | ringassd | ⊢ ( 𝜑 → ( ( 𝑌 · 𝑋 ) · 𝑍 ) = ( 𝑌 · ( 𝑋 · 𝑍 ) ) ) |
| 12 | 8 10 11 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝑋 · ( 𝑌 · 𝑍 ) ) = ( 𝑌 · ( 𝑋 · 𝑍 ) ) ) |