This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication is commutative in a commutative ring. (Contributed by SN, 8-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | crngcomd.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| crngcomd.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| crngcomd.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| crngcomd.1 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| crngcomd.2 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | crngcomd | ⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) = ( 𝑌 · 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crngcomd.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | crngcomd.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | crngcomd.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 4 | crngcomd.1 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | crngcomd.2 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | 1 2 | crngcom | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 · 𝑌 ) = ( 𝑌 · 𝑋 ) ) |
| 7 | 3 4 5 6 | syl3anc | ⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) = ( 𝑌 · 𝑋 ) ) |