This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative/associative law that swaps the first two factors in a triple product in a commutative ring. See also mul12d . (Contributed by SN, 8-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | crng12d.b | |- B = ( Base ` R ) |
|
| crng12d.t | |- .x. = ( .r ` R ) |
||
| crng12d.r | |- ( ph -> R e. CRing ) |
||
| crng12d.1 | |- ( ph -> X e. B ) |
||
| crng12d.2 | |- ( ph -> Y e. B ) |
||
| crng12d.3 | |- ( ph -> Z e. B ) |
||
| Assertion | crng12d | |- ( ph -> ( X .x. ( Y .x. Z ) ) = ( Y .x. ( X .x. Z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crng12d.b | |- B = ( Base ` R ) |
|
| 2 | crng12d.t | |- .x. = ( .r ` R ) |
|
| 3 | crng12d.r | |- ( ph -> R e. CRing ) |
|
| 4 | crng12d.1 | |- ( ph -> X e. B ) |
|
| 5 | crng12d.2 | |- ( ph -> Y e. B ) |
|
| 6 | crng12d.3 | |- ( ph -> Z e. B ) |
|
| 7 | 1 2 3 4 5 | crngcomd | |- ( ph -> ( X .x. Y ) = ( Y .x. X ) ) |
| 8 | 7 | oveq1d | |- ( ph -> ( ( X .x. Y ) .x. Z ) = ( ( Y .x. X ) .x. Z ) ) |
| 9 | 3 | crngringd | |- ( ph -> R e. Ring ) |
| 10 | 1 2 9 4 5 6 | ringassd | |- ( ph -> ( ( X .x. Y ) .x. Z ) = ( X .x. ( Y .x. Z ) ) ) |
| 11 | 1 2 9 5 4 6 | ringassd | |- ( ph -> ( ( Y .x. X ) .x. Z ) = ( Y .x. ( X .x. Z ) ) ) |
| 12 | 8 10 11 | 3eqtr3d | |- ( ph -> ( X .x. ( Y .x. Z ) ) = ( Y .x. ( X .x. Z ) ) ) |