This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a norm-augmented subcomplex pre-Hilbert space is the same as the original norm on it. (Contributed by Mario Carneiro, 11-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tcphval.n | |- G = ( toCPreHil ` W ) |
|
| cphtcphnm.n | |- N = ( norm ` W ) |
||
| Assertion | cphtcphnm | |- ( W e. CPreHil -> N = ( norm ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcphval.n | |- G = ( toCPreHil ` W ) |
|
| 2 | cphtcphnm.n | |- N = ( norm ` W ) |
|
| 3 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 4 | eqid | |- ( .i ` W ) = ( .i ` W ) |
|
| 5 | 3 4 2 | cphnmfval | |- ( W e. CPreHil -> N = ( x e. ( Base ` W ) |-> ( sqrt ` ( x ( .i ` W ) x ) ) ) ) |
| 6 | cphlmod | |- ( W e. CPreHil -> W e. LMod ) |
|
| 7 | lmodgrp | |- ( W e. LMod -> W e. Grp ) |
|
| 8 | eqid | |- ( norm ` G ) = ( norm ` G ) |
|
| 9 | 1 8 3 4 | tchnmfval | |- ( W e. Grp -> ( norm ` G ) = ( x e. ( Base ` W ) |-> ( sqrt ` ( x ( .i ` W ) x ) ) ) ) |
| 10 | 6 7 9 | 3syl | |- ( W e. CPreHil -> ( norm ` G ) = ( x e. ( Base ` W ) |-> ( sqrt ` ( x ( .i ` W ) x ) ) ) ) |
| 11 | 5 10 | eqtr4d | |- ( W e. CPreHil -> N = ( norm ` G ) ) |