This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inner product of a vector with itself is zero iff the vector is zero. Part of Definition 3.1-1 of Kreyszig p. 129. Complex version of ipeq0 . (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphipcj.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| cphipcj.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| cphip0l.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| Assertion | cphipeq0 | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝐴 , 𝐴 ) = 0 ↔ 𝐴 = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphipcj.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 2 | cphipcj.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 3 | cphip0l.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 4 | cphclm | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod ) | |
| 5 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 6 | 5 | clm0 | ⊢ ( 𝑊 ∈ ℂMod → 0 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 7 | 4 6 | syl | ⊢ ( 𝑊 ∈ ℂPreHil → 0 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 8 | 7 | adantr | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → 0 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 9 | 8 | eqeq2d | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝐴 , 𝐴 ) = 0 ↔ ( 𝐴 , 𝐴 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 10 | cphphl | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil ) | |
| 11 | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | |
| 12 | 5 1 2 11 3 | ipeq0 | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝐴 , 𝐴 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ 𝐴 = 0 ) ) |
| 13 | 10 12 | sylan | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝐴 , 𝐴 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ 𝐴 = 0 ) ) |
| 14 | 9 13 | bitrd | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝐴 , 𝐴 ) = 0 ↔ 𝐴 = 0 ) ) |