This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inner product of a vector with itself is zero iff the vector is zero. Part of Definition 3.1-1 of Kreyszig p. 129. Complex version of ipeq0 . (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphipcj.h | ||
| cphipcj.v | |||
| cphip0l.z | |||
| Assertion | cphipeq0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphipcj.h | ||
| 2 | cphipcj.v | ||
| 3 | cphip0l.z | ||
| 4 | cphclm | ||
| 5 | eqid | ||
| 6 | 5 | clm0 | |
| 7 | 4 6 | syl | |
| 8 | 7 | adantr | |
| 9 | 8 | eqeq2d | |
| 10 | cphphl | ||
| 11 | eqid | ||
| 12 | 5 1 2 11 3 | ipeq0 | |
| 13 | 10 12 | sylan | |
| 14 | 9 13 | bitrd |