This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inner product with a zero second argument. Complex version of ip0r . (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphipcj.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| cphipcj.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| cphip0l.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| Assertion | cphip0r | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 , 0 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphipcj.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 2 | cphipcj.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 3 | cphip0l.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 4 | cphphl | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil ) | |
| 5 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 6 | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | |
| 7 | 5 1 2 6 3 | ip0r | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 , 0 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 8 | 4 7 | sylan | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 , 0 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 9 | cphclm | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod ) | |
| 10 | 5 | clm0 | ⊢ ( 𝑊 ∈ ℂMod → 0 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 11 | 9 10 | syl | ⊢ ( 𝑊 ∈ ℂPreHil → 0 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 12 | 11 | adantr | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → 0 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 13 | 8 12 | eqtr4d | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 , 0 ) = 0 ) |