This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for inner product (left-distributivity). Complex version of ipdi . (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphipcj.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| cphipcj.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| cphdir.P | ⊢ + = ( +g ‘ 𝑊 ) | ||
| Assertion | cphdi | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐴 , ( 𝐵 + 𝐶 ) ) = ( ( 𝐴 , 𝐵 ) + ( 𝐴 , 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphipcj.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 2 | cphipcj.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 3 | cphdir.P | ⊢ + = ( +g ‘ 𝑊 ) | |
| 4 | cphphl | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil ) | |
| 5 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 6 | eqid | ⊢ ( +g ‘ ( Scalar ‘ 𝑊 ) ) = ( +g ‘ ( Scalar ‘ 𝑊 ) ) | |
| 7 | 5 1 2 3 6 | ipdi | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐴 , ( 𝐵 + 𝐶 ) ) = ( ( 𝐴 , 𝐵 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐴 , 𝐶 ) ) ) |
| 8 | 4 7 | sylan | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐴 , ( 𝐵 + 𝐶 ) ) = ( ( 𝐴 , 𝐵 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐴 , 𝐶 ) ) ) |
| 9 | cphclm | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod ) | |
| 10 | 5 | clmadd | ⊢ ( 𝑊 ∈ ℂMod → + = ( +g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 11 | 9 10 | syl | ⊢ ( 𝑊 ∈ ℂPreHil → + = ( +g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 12 | 11 | adantr | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → + = ( +g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 13 | 12 | oveqd | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 , 𝐵 ) + ( 𝐴 , 𝐶 ) ) = ( ( 𝐴 , 𝐵 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐴 , 𝐶 ) ) ) |
| 14 | 8 13 | eqtr4d | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐴 , ( 𝐵 + 𝐶 ) ) = ( ( 𝐴 , 𝐵 ) + ( 𝐴 , 𝐶 ) ) ) |