This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Class composition distributes over union. (Contributed by NM, 21-Dec-2008) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coundir | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∘ 𝐶 ) = ( ( 𝐴 ∘ 𝐶 ) ∪ ( 𝐵 ∘ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unopab | ⊢ ( { 〈 𝑥 , 𝑧 〉 ∣ ∃ 𝑦 ( 𝑥 𝐶 𝑦 ∧ 𝑦 𝐴 𝑧 ) } ∪ { 〈 𝑥 , 𝑧 〉 ∣ ∃ 𝑦 ( 𝑥 𝐶 𝑦 ∧ 𝑦 𝐵 𝑧 ) } ) = { 〈 𝑥 , 𝑧 〉 ∣ ( ∃ 𝑦 ( 𝑥 𝐶 𝑦 ∧ 𝑦 𝐴 𝑧 ) ∨ ∃ 𝑦 ( 𝑥 𝐶 𝑦 ∧ 𝑦 𝐵 𝑧 ) ) } | |
| 2 | brun | ⊢ ( 𝑦 ( 𝐴 ∪ 𝐵 ) 𝑧 ↔ ( 𝑦 𝐴 𝑧 ∨ 𝑦 𝐵 𝑧 ) ) | |
| 3 | 2 | anbi2i | ⊢ ( ( 𝑥 𝐶 𝑦 ∧ 𝑦 ( 𝐴 ∪ 𝐵 ) 𝑧 ) ↔ ( 𝑥 𝐶 𝑦 ∧ ( 𝑦 𝐴 𝑧 ∨ 𝑦 𝐵 𝑧 ) ) ) |
| 4 | andi | ⊢ ( ( 𝑥 𝐶 𝑦 ∧ ( 𝑦 𝐴 𝑧 ∨ 𝑦 𝐵 𝑧 ) ) ↔ ( ( 𝑥 𝐶 𝑦 ∧ 𝑦 𝐴 𝑧 ) ∨ ( 𝑥 𝐶 𝑦 ∧ 𝑦 𝐵 𝑧 ) ) ) | |
| 5 | 3 4 | bitri | ⊢ ( ( 𝑥 𝐶 𝑦 ∧ 𝑦 ( 𝐴 ∪ 𝐵 ) 𝑧 ) ↔ ( ( 𝑥 𝐶 𝑦 ∧ 𝑦 𝐴 𝑧 ) ∨ ( 𝑥 𝐶 𝑦 ∧ 𝑦 𝐵 𝑧 ) ) ) |
| 6 | 5 | exbii | ⊢ ( ∃ 𝑦 ( 𝑥 𝐶 𝑦 ∧ 𝑦 ( 𝐴 ∪ 𝐵 ) 𝑧 ) ↔ ∃ 𝑦 ( ( 𝑥 𝐶 𝑦 ∧ 𝑦 𝐴 𝑧 ) ∨ ( 𝑥 𝐶 𝑦 ∧ 𝑦 𝐵 𝑧 ) ) ) |
| 7 | 19.43 | ⊢ ( ∃ 𝑦 ( ( 𝑥 𝐶 𝑦 ∧ 𝑦 𝐴 𝑧 ) ∨ ( 𝑥 𝐶 𝑦 ∧ 𝑦 𝐵 𝑧 ) ) ↔ ( ∃ 𝑦 ( 𝑥 𝐶 𝑦 ∧ 𝑦 𝐴 𝑧 ) ∨ ∃ 𝑦 ( 𝑥 𝐶 𝑦 ∧ 𝑦 𝐵 𝑧 ) ) ) | |
| 8 | 6 7 | bitr2i | ⊢ ( ( ∃ 𝑦 ( 𝑥 𝐶 𝑦 ∧ 𝑦 𝐴 𝑧 ) ∨ ∃ 𝑦 ( 𝑥 𝐶 𝑦 ∧ 𝑦 𝐵 𝑧 ) ) ↔ ∃ 𝑦 ( 𝑥 𝐶 𝑦 ∧ 𝑦 ( 𝐴 ∪ 𝐵 ) 𝑧 ) ) |
| 9 | 8 | opabbii | ⊢ { 〈 𝑥 , 𝑧 〉 ∣ ( ∃ 𝑦 ( 𝑥 𝐶 𝑦 ∧ 𝑦 𝐴 𝑧 ) ∨ ∃ 𝑦 ( 𝑥 𝐶 𝑦 ∧ 𝑦 𝐵 𝑧 ) ) } = { 〈 𝑥 , 𝑧 〉 ∣ ∃ 𝑦 ( 𝑥 𝐶 𝑦 ∧ 𝑦 ( 𝐴 ∪ 𝐵 ) 𝑧 ) } |
| 10 | 1 9 | eqtri | ⊢ ( { 〈 𝑥 , 𝑧 〉 ∣ ∃ 𝑦 ( 𝑥 𝐶 𝑦 ∧ 𝑦 𝐴 𝑧 ) } ∪ { 〈 𝑥 , 𝑧 〉 ∣ ∃ 𝑦 ( 𝑥 𝐶 𝑦 ∧ 𝑦 𝐵 𝑧 ) } ) = { 〈 𝑥 , 𝑧 〉 ∣ ∃ 𝑦 ( 𝑥 𝐶 𝑦 ∧ 𝑦 ( 𝐴 ∪ 𝐵 ) 𝑧 ) } |
| 11 | df-co | ⊢ ( 𝐴 ∘ 𝐶 ) = { 〈 𝑥 , 𝑧 〉 ∣ ∃ 𝑦 ( 𝑥 𝐶 𝑦 ∧ 𝑦 𝐴 𝑧 ) } | |
| 12 | df-co | ⊢ ( 𝐵 ∘ 𝐶 ) = { 〈 𝑥 , 𝑧 〉 ∣ ∃ 𝑦 ( 𝑥 𝐶 𝑦 ∧ 𝑦 𝐵 𝑧 ) } | |
| 13 | 11 12 | uneq12i | ⊢ ( ( 𝐴 ∘ 𝐶 ) ∪ ( 𝐵 ∘ 𝐶 ) ) = ( { 〈 𝑥 , 𝑧 〉 ∣ ∃ 𝑦 ( 𝑥 𝐶 𝑦 ∧ 𝑦 𝐴 𝑧 ) } ∪ { 〈 𝑥 , 𝑧 〉 ∣ ∃ 𝑦 ( 𝑥 𝐶 𝑦 ∧ 𝑦 𝐵 𝑧 ) } ) |
| 14 | df-co | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∘ 𝐶 ) = { 〈 𝑥 , 𝑧 〉 ∣ ∃ 𝑦 ( 𝑥 𝐶 𝑦 ∧ 𝑦 ( 𝐴 ∪ 𝐵 ) 𝑧 ) } | |
| 15 | 10 13 14 | 3eqtr4ri | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∘ 𝐶 ) = ( ( 𝐴 ∘ 𝐶 ) ∪ ( 𝐵 ∘ 𝐶 ) ) |