This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Class of cosets by the converse of a restriction. (Contributed by Peter Mazsa, 8-Jun-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coss1cnvres | ⊢ ≀ ◡ ( 𝑅 ↾ 𝐴 ) = { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ∃ 𝑥 ( 𝑢 𝑅 𝑥 ∧ 𝑣 𝑅 𝑥 ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-coss | ⊢ ≀ ◡ ( 𝑅 ↾ 𝐴 ) = { 〈 𝑢 , 𝑣 〉 ∣ ∃ 𝑥 ( 𝑥 ◡ ( 𝑅 ↾ 𝐴 ) 𝑢 ∧ 𝑥 ◡ ( 𝑅 ↾ 𝐴 ) 𝑣 ) } | |
| 2 | br1cnvres | ⊢ ( 𝑥 ∈ V → ( 𝑥 ◡ ( 𝑅 ↾ 𝐴 ) 𝑢 ↔ ( 𝑢 ∈ 𝐴 ∧ 𝑢 𝑅 𝑥 ) ) ) | |
| 3 | 2 | elv | ⊢ ( 𝑥 ◡ ( 𝑅 ↾ 𝐴 ) 𝑢 ↔ ( 𝑢 ∈ 𝐴 ∧ 𝑢 𝑅 𝑥 ) ) |
| 4 | br1cnvres | ⊢ ( 𝑥 ∈ V → ( 𝑥 ◡ ( 𝑅 ↾ 𝐴 ) 𝑣 ↔ ( 𝑣 ∈ 𝐴 ∧ 𝑣 𝑅 𝑥 ) ) ) | |
| 5 | 4 | elv | ⊢ ( 𝑥 ◡ ( 𝑅 ↾ 𝐴 ) 𝑣 ↔ ( 𝑣 ∈ 𝐴 ∧ 𝑣 𝑅 𝑥 ) ) |
| 6 | 3 5 | anbi12i | ⊢ ( ( 𝑥 ◡ ( 𝑅 ↾ 𝐴 ) 𝑢 ∧ 𝑥 ◡ ( 𝑅 ↾ 𝐴 ) 𝑣 ) ↔ ( ( 𝑢 ∈ 𝐴 ∧ 𝑢 𝑅 𝑥 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 𝑅 𝑥 ) ) ) |
| 7 | an4 | ⊢ ( ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝑢 𝑅 𝑥 ∧ 𝑣 𝑅 𝑥 ) ) ↔ ( ( 𝑢 ∈ 𝐴 ∧ 𝑢 𝑅 𝑥 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 𝑅 𝑥 ) ) ) | |
| 8 | 6 7 | bitr4i | ⊢ ( ( 𝑥 ◡ ( 𝑅 ↾ 𝐴 ) 𝑢 ∧ 𝑥 ◡ ( 𝑅 ↾ 𝐴 ) 𝑣 ) ↔ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝑢 𝑅 𝑥 ∧ 𝑣 𝑅 𝑥 ) ) ) |
| 9 | 8 | exbii | ⊢ ( ∃ 𝑥 ( 𝑥 ◡ ( 𝑅 ↾ 𝐴 ) 𝑢 ∧ 𝑥 ◡ ( 𝑅 ↾ 𝐴 ) 𝑣 ) ↔ ∃ 𝑥 ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝑢 𝑅 𝑥 ∧ 𝑣 𝑅 𝑥 ) ) ) |
| 10 | 19.42v | ⊢ ( ∃ 𝑥 ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝑢 𝑅 𝑥 ∧ 𝑣 𝑅 𝑥 ) ) ↔ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ∃ 𝑥 ( 𝑢 𝑅 𝑥 ∧ 𝑣 𝑅 𝑥 ) ) ) | |
| 11 | 9 10 | bitri | ⊢ ( ∃ 𝑥 ( 𝑥 ◡ ( 𝑅 ↾ 𝐴 ) 𝑢 ∧ 𝑥 ◡ ( 𝑅 ↾ 𝐴 ) 𝑣 ) ↔ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ∃ 𝑥 ( 𝑢 𝑅 𝑥 ∧ 𝑣 𝑅 𝑥 ) ) ) |
| 12 | 11 | opabbii | ⊢ { 〈 𝑢 , 𝑣 〉 ∣ ∃ 𝑥 ( 𝑥 ◡ ( 𝑅 ↾ 𝐴 ) 𝑢 ∧ 𝑥 ◡ ( 𝑅 ↾ 𝐴 ) 𝑣 ) } = { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ∃ 𝑥 ( 𝑢 𝑅 𝑥 ∧ 𝑣 𝑅 𝑥 ) ) } |
| 13 | 1 12 | eqtri | ⊢ ≀ ◡ ( 𝑅 ↾ 𝐴 ) = { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ∃ 𝑥 ( 𝑢 𝑅 𝑥 ∧ 𝑣 𝑅 𝑥 ) ) } |