This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Special case of coss1cnvres . (Contributed by Peter Mazsa, 8-Jun-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coss2cnvepres | ⊢ ≀ ◡ ( ◡ E ↾ 𝐴 ) = { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ∃ 𝑥 ( 𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑣 ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coss1cnvres | ⊢ ≀ ◡ ( ◡ E ↾ 𝐴 ) = { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ∃ 𝑥 ( 𝑢 ◡ E 𝑥 ∧ 𝑣 ◡ E 𝑥 ) ) } | |
| 2 | brcnvep | ⊢ ( 𝑢 ∈ V → ( 𝑢 ◡ E 𝑥 ↔ 𝑥 ∈ 𝑢 ) ) | |
| 3 | 2 | elv | ⊢ ( 𝑢 ◡ E 𝑥 ↔ 𝑥 ∈ 𝑢 ) |
| 4 | brcnvep | ⊢ ( 𝑣 ∈ V → ( 𝑣 ◡ E 𝑥 ↔ 𝑥 ∈ 𝑣 ) ) | |
| 5 | 4 | elv | ⊢ ( 𝑣 ◡ E 𝑥 ↔ 𝑥 ∈ 𝑣 ) |
| 6 | 3 5 | anbi12i | ⊢ ( ( 𝑢 ◡ E 𝑥 ∧ 𝑣 ◡ E 𝑥 ) ↔ ( 𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑣 ) ) |
| 7 | 6 | exbii | ⊢ ( ∃ 𝑥 ( 𝑢 ◡ E 𝑥 ∧ 𝑣 ◡ E 𝑥 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑣 ) ) |
| 8 | 7 | anbi2i | ⊢ ( ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ∃ 𝑥 ( 𝑢 ◡ E 𝑥 ∧ 𝑣 ◡ E 𝑥 ) ) ↔ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ∃ 𝑥 ( 𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑣 ) ) ) |
| 9 | 8 | opabbii | ⊢ { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ∃ 𝑥 ( 𝑢 ◡ E 𝑥 ∧ 𝑣 ◡ E 𝑥 ) ) } = { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ∃ 𝑥 ( 𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑣 ) ) } |
| 10 | 1 9 | eqtri | ⊢ ≀ ◡ ( ◡ E ↾ 𝐴 ) = { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ∃ 𝑥 ( 𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑣 ) ) } |