This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Class of cosets by the converse of a restriction. (Contributed by Peter Mazsa, 8-Jun-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coss1cnvres | |- ,~ `' ( R |` A ) = { <. u , v >. | ( ( u e. A /\ v e. A ) /\ E. x ( u R x /\ v R x ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-coss | |- ,~ `' ( R |` A ) = { <. u , v >. | E. x ( x `' ( R |` A ) u /\ x `' ( R |` A ) v ) } |
|
| 2 | br1cnvres | |- ( x e. _V -> ( x `' ( R |` A ) u <-> ( u e. A /\ u R x ) ) ) |
|
| 3 | 2 | elv | |- ( x `' ( R |` A ) u <-> ( u e. A /\ u R x ) ) |
| 4 | br1cnvres | |- ( x e. _V -> ( x `' ( R |` A ) v <-> ( v e. A /\ v R x ) ) ) |
|
| 5 | 4 | elv | |- ( x `' ( R |` A ) v <-> ( v e. A /\ v R x ) ) |
| 6 | 3 5 | anbi12i | |- ( ( x `' ( R |` A ) u /\ x `' ( R |` A ) v ) <-> ( ( u e. A /\ u R x ) /\ ( v e. A /\ v R x ) ) ) |
| 7 | an4 | |- ( ( ( u e. A /\ v e. A ) /\ ( u R x /\ v R x ) ) <-> ( ( u e. A /\ u R x ) /\ ( v e. A /\ v R x ) ) ) |
|
| 8 | 6 7 | bitr4i | |- ( ( x `' ( R |` A ) u /\ x `' ( R |` A ) v ) <-> ( ( u e. A /\ v e. A ) /\ ( u R x /\ v R x ) ) ) |
| 9 | 8 | exbii | |- ( E. x ( x `' ( R |` A ) u /\ x `' ( R |` A ) v ) <-> E. x ( ( u e. A /\ v e. A ) /\ ( u R x /\ v R x ) ) ) |
| 10 | 19.42v | |- ( E. x ( ( u e. A /\ v e. A ) /\ ( u R x /\ v R x ) ) <-> ( ( u e. A /\ v e. A ) /\ E. x ( u R x /\ v R x ) ) ) |
|
| 11 | 9 10 | bitri | |- ( E. x ( x `' ( R |` A ) u /\ x `' ( R |` A ) v ) <-> ( ( u e. A /\ v e. A ) /\ E. x ( u R x /\ v R x ) ) ) |
| 12 | 11 | opabbii | |- { <. u , v >. | E. x ( x `' ( R |` A ) u /\ x `' ( R |` A ) v ) } = { <. u , v >. | ( ( u e. A /\ v e. A ) /\ E. x ( u R x /\ v R x ) ) } |
| 13 | 1 12 | eqtri | |- ,~ `' ( R |` A ) = { <. u , v >. | ( ( u e. A /\ v e. A ) /\ E. x ( u R x /\ v R x ) ) } |