This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential function at _i times a real number less _pi . (Contributed by Paul Chapman, 15-Mar-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efimpi | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · ( 𝐴 − π ) ) ) = - ( exp ‘ ( i · 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | picn | ⊢ π ∈ ℂ | |
| 2 | subcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ π ∈ ℂ ) → ( 𝐴 − π ) ∈ ℂ ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 − π ) ∈ ℂ ) |
| 4 | efival | ⊢ ( ( 𝐴 − π ) ∈ ℂ → ( exp ‘ ( i · ( 𝐴 − π ) ) ) = ( ( cos ‘ ( 𝐴 − π ) ) + ( i · ( sin ‘ ( 𝐴 − π ) ) ) ) ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · ( 𝐴 − π ) ) ) = ( ( cos ‘ ( 𝐴 − π ) ) + ( i · ( sin ‘ ( 𝐴 − π ) ) ) ) ) |
| 6 | coscl | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) ∈ ℂ ) | |
| 7 | ax-icn | ⊢ i ∈ ℂ | |
| 8 | sincl | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) ∈ ℂ ) | |
| 9 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( sin ‘ 𝐴 ) ∈ ℂ ) → ( i · ( sin ‘ 𝐴 ) ) ∈ ℂ ) | |
| 10 | 7 8 9 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( i · ( sin ‘ 𝐴 ) ) ∈ ℂ ) |
| 11 | 6 10 | negdid | ⊢ ( 𝐴 ∈ ℂ → - ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) = ( - ( cos ‘ 𝐴 ) + - ( i · ( sin ‘ 𝐴 ) ) ) ) |
| 12 | cosmpi | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( 𝐴 − π ) ) = - ( cos ‘ 𝐴 ) ) | |
| 13 | sinmpi | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( 𝐴 − π ) ) = - ( sin ‘ 𝐴 ) ) | |
| 14 | 13 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( i · ( sin ‘ ( 𝐴 − π ) ) ) = ( i · - ( sin ‘ 𝐴 ) ) ) |
| 15 | mulneg2 | ⊢ ( ( i ∈ ℂ ∧ ( sin ‘ 𝐴 ) ∈ ℂ ) → ( i · - ( sin ‘ 𝐴 ) ) = - ( i · ( sin ‘ 𝐴 ) ) ) | |
| 16 | 7 8 15 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( i · - ( sin ‘ 𝐴 ) ) = - ( i · ( sin ‘ 𝐴 ) ) ) |
| 17 | 14 16 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( i · ( sin ‘ ( 𝐴 − π ) ) ) = - ( i · ( sin ‘ 𝐴 ) ) ) |
| 18 | 12 17 | oveq12d | ⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ ( 𝐴 − π ) ) + ( i · ( sin ‘ ( 𝐴 − π ) ) ) ) = ( - ( cos ‘ 𝐴 ) + - ( i · ( sin ‘ 𝐴 ) ) ) ) |
| 19 | 11 18 | eqtr4d | ⊢ ( 𝐴 ∈ ℂ → - ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) = ( ( cos ‘ ( 𝐴 − π ) ) + ( i · ( sin ‘ ( 𝐴 − π ) ) ) ) ) |
| 20 | 5 19 | eqtr4d | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · ( 𝐴 − π ) ) ) = - ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ) |
| 21 | efival | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · 𝐴 ) ) = ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ) | |
| 22 | 21 | negeqd | ⊢ ( 𝐴 ∈ ℂ → - ( exp ‘ ( i · 𝐴 ) ) = - ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ) |
| 23 | 20 22 | eqtr4d | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · ( 𝐴 − π ) ) ) = - ( exp ‘ ( i · 𝐴 ) ) ) |