This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cosine of the argument is zero precisely on the imaginary axis. (Contributed by David Moews, 28-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cosargd.1 | ⊢ ( 𝜑 → 𝑋 ∈ ℂ ) | |
| cosargd.2 | ⊢ ( 𝜑 → 𝑋 ≠ 0 ) | ||
| Assertion | cosarg0d | ⊢ ( 𝜑 → ( ( cos ‘ ( ℑ ‘ ( log ‘ 𝑋 ) ) ) = 0 ↔ ( ℜ ‘ 𝑋 ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cosargd.1 | ⊢ ( 𝜑 → 𝑋 ∈ ℂ ) | |
| 2 | cosargd.2 | ⊢ ( 𝜑 → 𝑋 ≠ 0 ) | |
| 3 | 1 2 | cosargd | ⊢ ( 𝜑 → ( cos ‘ ( ℑ ‘ ( log ‘ 𝑋 ) ) ) = ( ( ℜ ‘ 𝑋 ) / ( abs ‘ 𝑋 ) ) ) |
| 4 | 3 | eqeq1d | ⊢ ( 𝜑 → ( ( cos ‘ ( ℑ ‘ ( log ‘ 𝑋 ) ) ) = 0 ↔ ( ( ℜ ‘ 𝑋 ) / ( abs ‘ 𝑋 ) ) = 0 ) ) |
| 5 | 1 | recld | ⊢ ( 𝜑 → ( ℜ ‘ 𝑋 ) ∈ ℝ ) |
| 6 | 5 | recnd | ⊢ ( 𝜑 → ( ℜ ‘ 𝑋 ) ∈ ℂ ) |
| 7 | 1 | abscld | ⊢ ( 𝜑 → ( abs ‘ 𝑋 ) ∈ ℝ ) |
| 8 | 7 | recnd | ⊢ ( 𝜑 → ( abs ‘ 𝑋 ) ∈ ℂ ) |
| 9 | 1 2 | absne0d | ⊢ ( 𝜑 → ( abs ‘ 𝑋 ) ≠ 0 ) |
| 10 | 6 8 9 | diveq0ad | ⊢ ( 𝜑 → ( ( ( ℜ ‘ 𝑋 ) / ( abs ‘ 𝑋 ) ) = 0 ↔ ( ℜ ‘ 𝑋 ) = 0 ) ) |
| 11 | 4 10 | bitrd | ⊢ ( 𝜑 → ( ( cos ‘ ( ℑ ‘ ( log ‘ 𝑋 ) ) ) = 0 ↔ ( ℜ ‘ 𝑋 ) = 0 ) ) |