This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cosine of 2 _pi is 1. (Contributed by Paul Chapman, 23-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cos2pi | ⊢ ( cos ‘ ( 2 · π ) ) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | picn | ⊢ π ∈ ℂ | |
| 2 | cos2t | ⊢ ( π ∈ ℂ → ( cos ‘ ( 2 · π ) ) = ( ( 2 · ( ( cos ‘ π ) ↑ 2 ) ) − 1 ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( cos ‘ ( 2 · π ) ) = ( ( 2 · ( ( cos ‘ π ) ↑ 2 ) ) − 1 ) |
| 4 | cospi | ⊢ ( cos ‘ π ) = - 1 | |
| 5 | 4 | oveq1i | ⊢ ( ( cos ‘ π ) ↑ 2 ) = ( - 1 ↑ 2 ) |
| 6 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 7 | sqneg | ⊢ ( 1 ∈ ℂ → ( - 1 ↑ 2 ) = ( 1 ↑ 2 ) ) | |
| 8 | 6 7 | ax-mp | ⊢ ( - 1 ↑ 2 ) = ( 1 ↑ 2 ) |
| 9 | sq1 | ⊢ ( 1 ↑ 2 ) = 1 | |
| 10 | 5 8 9 | 3eqtri | ⊢ ( ( cos ‘ π ) ↑ 2 ) = 1 |
| 11 | 10 | oveq2i | ⊢ ( 2 · ( ( cos ‘ π ) ↑ 2 ) ) = ( 2 · 1 ) |
| 12 | 2t1e2 | ⊢ ( 2 · 1 ) = 2 | |
| 13 | 11 12 | eqtri | ⊢ ( 2 · ( ( cos ‘ π ) ↑ 2 ) ) = 2 |
| 14 | 13 | oveq1i | ⊢ ( ( 2 · ( ( cos ‘ π ) ↑ 2 ) ) − 1 ) = ( 2 − 1 ) |
| 15 | 2m1e1 | ⊢ ( 2 − 1 ) = 1 | |
| 16 | 3 14 15 | 3eqtri | ⊢ ( cos ‘ ( 2 · π ) ) = 1 |