This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A conjugated subgroup is equinumerous to the original subgroup. (Contributed by Mario Carneiro, 18-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | conjghm.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| conjghm.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| conjghm.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| conjsubg.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) | ||
| Assertion | conjsubgen | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) → 𝑆 ≈ ran 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | conjghm.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | conjghm.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | conjghm.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | conjsubg.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) | |
| 5 | subgrcl | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 6 | eqid | ⊢ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) | |
| 7 | 1 2 3 6 | conjghm | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) ∈ ( 𝐺 GrpHom 𝐺 ) ∧ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) : 𝑋 –1-1-onto→ 𝑋 ) ) |
| 8 | 5 7 | sylan | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) ∈ ( 𝐺 GrpHom 𝐺 ) ∧ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) : 𝑋 –1-1-onto→ 𝑋 ) ) |
| 9 | f1of1 | ⊢ ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) : 𝑋 –1-1-onto→ 𝑋 → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) : 𝑋 –1-1→ 𝑋 ) | |
| 10 | 8 9 | simpl2im | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) : 𝑋 –1-1→ 𝑋 ) |
| 11 | 1 | subgss | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ 𝑋 ) |
| 12 | 11 | adantr | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) → 𝑆 ⊆ 𝑋 ) |
| 13 | f1ssres | ⊢ ( ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) : 𝑋 –1-1→ 𝑋 ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) ↾ 𝑆 ) : 𝑆 –1-1→ 𝑋 ) | |
| 14 | 10 12 13 | syl2anc | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) ↾ 𝑆 ) : 𝑆 –1-1→ 𝑋 ) |
| 15 | 12 | resmptd | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) ↾ 𝑆 ) = ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) ) |
| 16 | 15 4 | eqtr4di | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) ↾ 𝑆 ) = 𝐹 ) |
| 17 | f1eq1 | ⊢ ( ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) ↾ 𝑆 ) = 𝐹 → ( ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) ↾ 𝑆 ) : 𝑆 –1-1→ 𝑋 ↔ 𝐹 : 𝑆 –1-1→ 𝑋 ) ) | |
| 18 | 16 17 | syl | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) ↾ 𝑆 ) : 𝑆 –1-1→ 𝑋 ↔ 𝐹 : 𝑆 –1-1→ 𝑋 ) ) |
| 19 | 14 18 | mpbid | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) → 𝐹 : 𝑆 –1-1→ 𝑋 ) |
| 20 | f1f1orn | ⊢ ( 𝐹 : 𝑆 –1-1→ 𝑋 → 𝐹 : 𝑆 –1-1-onto→ ran 𝐹 ) | |
| 21 | 19 20 | syl | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) → 𝐹 : 𝑆 –1-1-onto→ ran 𝐹 ) |
| 22 | f1oeng | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐹 : 𝑆 –1-1-onto→ ran 𝐹 ) → 𝑆 ≈ ran 𝐹 ) | |
| 23 | 21 22 | syldan | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) → 𝑆 ≈ ran 𝐹 ) |