This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A conjugated subgroup is equinumerous to the original subgroup. (Contributed by Mario Carneiro, 18-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | conjghm.x | |- X = ( Base ` G ) |
|
| conjghm.p | |- .+ = ( +g ` G ) |
||
| conjghm.m | |- .- = ( -g ` G ) |
||
| conjsubg.f | |- F = ( x e. S |-> ( ( A .+ x ) .- A ) ) |
||
| Assertion | conjsubgen | |- ( ( S e. ( SubGrp ` G ) /\ A e. X ) -> S ~~ ran F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | conjghm.x | |- X = ( Base ` G ) |
|
| 2 | conjghm.p | |- .+ = ( +g ` G ) |
|
| 3 | conjghm.m | |- .- = ( -g ` G ) |
|
| 4 | conjsubg.f | |- F = ( x e. S |-> ( ( A .+ x ) .- A ) ) |
|
| 5 | subgrcl | |- ( S e. ( SubGrp ` G ) -> G e. Grp ) |
|
| 6 | eqid | |- ( x e. X |-> ( ( A .+ x ) .- A ) ) = ( x e. X |-> ( ( A .+ x ) .- A ) ) |
|
| 7 | 1 2 3 6 | conjghm | |- ( ( G e. Grp /\ A e. X ) -> ( ( x e. X |-> ( ( A .+ x ) .- A ) ) e. ( G GrpHom G ) /\ ( x e. X |-> ( ( A .+ x ) .- A ) ) : X -1-1-onto-> X ) ) |
| 8 | 5 7 | sylan | |- ( ( S e. ( SubGrp ` G ) /\ A e. X ) -> ( ( x e. X |-> ( ( A .+ x ) .- A ) ) e. ( G GrpHom G ) /\ ( x e. X |-> ( ( A .+ x ) .- A ) ) : X -1-1-onto-> X ) ) |
| 9 | f1of1 | |- ( ( x e. X |-> ( ( A .+ x ) .- A ) ) : X -1-1-onto-> X -> ( x e. X |-> ( ( A .+ x ) .- A ) ) : X -1-1-> X ) |
|
| 10 | 8 9 | simpl2im | |- ( ( S e. ( SubGrp ` G ) /\ A e. X ) -> ( x e. X |-> ( ( A .+ x ) .- A ) ) : X -1-1-> X ) |
| 11 | 1 | subgss | |- ( S e. ( SubGrp ` G ) -> S C_ X ) |
| 12 | 11 | adantr | |- ( ( S e. ( SubGrp ` G ) /\ A e. X ) -> S C_ X ) |
| 13 | f1ssres | |- ( ( ( x e. X |-> ( ( A .+ x ) .- A ) ) : X -1-1-> X /\ S C_ X ) -> ( ( x e. X |-> ( ( A .+ x ) .- A ) ) |` S ) : S -1-1-> X ) |
|
| 14 | 10 12 13 | syl2anc | |- ( ( S e. ( SubGrp ` G ) /\ A e. X ) -> ( ( x e. X |-> ( ( A .+ x ) .- A ) ) |` S ) : S -1-1-> X ) |
| 15 | 12 | resmptd | |- ( ( S e. ( SubGrp ` G ) /\ A e. X ) -> ( ( x e. X |-> ( ( A .+ x ) .- A ) ) |` S ) = ( x e. S |-> ( ( A .+ x ) .- A ) ) ) |
| 16 | 15 4 | eqtr4di | |- ( ( S e. ( SubGrp ` G ) /\ A e. X ) -> ( ( x e. X |-> ( ( A .+ x ) .- A ) ) |` S ) = F ) |
| 17 | f1eq1 | |- ( ( ( x e. X |-> ( ( A .+ x ) .- A ) ) |` S ) = F -> ( ( ( x e. X |-> ( ( A .+ x ) .- A ) ) |` S ) : S -1-1-> X <-> F : S -1-1-> X ) ) |
|
| 18 | 16 17 | syl | |- ( ( S e. ( SubGrp ` G ) /\ A e. X ) -> ( ( ( x e. X |-> ( ( A .+ x ) .- A ) ) |` S ) : S -1-1-> X <-> F : S -1-1-> X ) ) |
| 19 | 14 18 | mpbid | |- ( ( S e. ( SubGrp ` G ) /\ A e. X ) -> F : S -1-1-> X ) |
| 20 | f1f1orn | |- ( F : S -1-1-> X -> F : S -1-1-onto-> ran F ) |
|
| 21 | 19 20 | syl | |- ( ( S e. ( SubGrp ` G ) /\ A e. X ) -> F : S -1-1-onto-> ran F ) |
| 22 | f1oeng | |- ( ( S e. ( SubGrp ` G ) /\ F : S -1-1-onto-> ran F ) -> S ~~ ran F ) |
|
| 23 | 21 22 | syldan | |- ( ( S e. ( SubGrp ` G ) /\ A e. X ) -> S ~~ ran F ) |