This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for compsscnv . (Contributed by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | compsscnvlem | ⊢ ( ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = ( 𝐴 ∖ 𝑥 ) ) → ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = ( 𝐴 ∖ 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = ( 𝐴 ∖ 𝑥 ) ) → 𝑦 = ( 𝐴 ∖ 𝑥 ) ) | |
| 2 | difss | ⊢ ( 𝐴 ∖ 𝑥 ) ⊆ 𝐴 | |
| 3 | 1 2 | eqsstrdi | ⊢ ( ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = ( 𝐴 ∖ 𝑥 ) ) → 𝑦 ⊆ 𝐴 ) |
| 4 | velpw | ⊢ ( 𝑦 ∈ 𝒫 𝐴 ↔ 𝑦 ⊆ 𝐴 ) | |
| 5 | 3 4 | sylibr | ⊢ ( ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = ( 𝐴 ∖ 𝑥 ) ) → 𝑦 ∈ 𝒫 𝐴 ) |
| 6 | 1 | difeq2d | ⊢ ( ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = ( 𝐴 ∖ 𝑥 ) ) → ( 𝐴 ∖ 𝑦 ) = ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) ) |
| 7 | elpwi | ⊢ ( 𝑥 ∈ 𝒫 𝐴 → 𝑥 ⊆ 𝐴 ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = ( 𝐴 ∖ 𝑥 ) ) → 𝑥 ⊆ 𝐴 ) |
| 9 | dfss4 | ⊢ ( 𝑥 ⊆ 𝐴 ↔ ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) = 𝑥 ) | |
| 10 | 8 9 | sylib | ⊢ ( ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = ( 𝐴 ∖ 𝑥 ) ) → ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) = 𝑥 ) |
| 11 | 6 10 | eqtr2d | ⊢ ( ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = ( 𝐴 ∖ 𝑥 ) ) → 𝑥 = ( 𝐴 ∖ 𝑦 ) ) |
| 12 | 5 11 | jca | ⊢ ( ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = ( 𝐴 ∖ 𝑥 ) ) → ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = ( 𝐴 ∖ 𝑦 ) ) ) |