This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition with the identity relation. Part of Theorem 3.7(i) of Monk1 p. 36. (Contributed by NM, 22-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coi1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relco | ||
| 2 | vex | ||
| 3 | vex | ||
| 4 | 2 3 | opelco | |
| 5 | vex | ||
| 6 | 5 | ideq | |
| 7 | equcom | ||
| 8 | 6 7 | bitri | |
| 9 | 8 | anbi1i | |
| 10 | 9 | exbii | |
| 11 | breq1 | ||
| 12 | 11 | equsexvw | |
| 13 | 10 12 | bitri | |
| 14 | 4 13 | bitri | |
| 15 | df-br | ||
| 16 | 14 15 | bitri | |
| 17 | 16 | eqrelriv | |
| 18 | 1 17 | mpan |