This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If " F is a section of G " in a category of small categories (in a universe), then the morphism part of F is injective, and the morphism part of G is surjective in the image of F . (Contributed by Zhi Wang, 15-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cofidval.i | |- I = ( idFunc ` D ) |
|
| cofidval.b | |- B = ( Base ` D ) |
||
| cofidval.f | |- ( ph -> F ( D Func E ) G ) |
||
| cofidval.k | |- ( ph -> K ( E Func D ) L ) |
||
| cofidval.o | |- ( ph -> ( <. K , L >. o.func <. F , G >. ) = I ) |
||
| cofidval.h | |- H = ( Hom ` D ) |
||
| cofidf2.j | |- J = ( Hom ` E ) |
||
| cofidf2.x | |- ( ph -> X e. B ) |
||
| cofidf2.y | |- ( ph -> Y e. B ) |
||
| Assertion | cofidf2 | |- ( ph -> ( ( X G Y ) : ( X H Y ) -1-1-> ( ( F ` X ) J ( F ` Y ) ) /\ ( ( F ` X ) L ( F ` Y ) ) : ( ( F ` X ) J ( F ` Y ) ) -onto-> ( X H Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofidval.i | |- I = ( idFunc ` D ) |
|
| 2 | cofidval.b | |- B = ( Base ` D ) |
|
| 3 | cofidval.f | |- ( ph -> F ( D Func E ) G ) |
|
| 4 | cofidval.k | |- ( ph -> K ( E Func D ) L ) |
|
| 5 | cofidval.o | |- ( ph -> ( <. K , L >. o.func <. F , G >. ) = I ) |
|
| 6 | cofidval.h | |- H = ( Hom ` D ) |
|
| 7 | cofidf2.j | |- J = ( Hom ` E ) |
|
| 8 | cofidf2.x | |- ( ph -> X e. B ) |
|
| 9 | cofidf2.y | |- ( ph -> Y e. B ) |
|
| 10 | df-br | |- ( F ( D Func E ) G <-> <. F , G >. e. ( D Func E ) ) |
|
| 11 | 3 10 | sylib | |- ( ph -> <. F , G >. e. ( D Func E ) ) |
| 12 | df-br | |- ( K ( E Func D ) L <-> <. K , L >. e. ( E Func D ) ) |
|
| 13 | 4 12 | sylib | |- ( ph -> <. K , L >. e. ( E Func D ) ) |
| 14 | 1 2 11 13 5 6 7 8 9 | cofidf2a | |- ( ph -> ( ( X ( 2nd ` <. F , G >. ) Y ) : ( X H Y ) -1-1-> ( ( ( 1st ` <. F , G >. ) ` X ) J ( ( 1st ` <. F , G >. ) ` Y ) ) /\ ( ( ( 1st ` <. F , G >. ) ` X ) ( 2nd ` <. K , L >. ) ( ( 1st ` <. F , G >. ) ` Y ) ) : ( ( ( 1st ` <. F , G >. ) ` X ) J ( ( 1st ` <. F , G >. ) ` Y ) ) -onto-> ( X H Y ) ) ) |
| 15 | 3 | func2nd | |- ( ph -> ( 2nd ` <. F , G >. ) = G ) |
| 16 | 15 | oveqd | |- ( ph -> ( X ( 2nd ` <. F , G >. ) Y ) = ( X G Y ) ) |
| 17 | eqidd | |- ( ph -> ( X H Y ) = ( X H Y ) ) |
|
| 18 | 3 | func1st | |- ( ph -> ( 1st ` <. F , G >. ) = F ) |
| 19 | 18 | fveq1d | |- ( ph -> ( ( 1st ` <. F , G >. ) ` X ) = ( F ` X ) ) |
| 20 | 18 | fveq1d | |- ( ph -> ( ( 1st ` <. F , G >. ) ` Y ) = ( F ` Y ) ) |
| 21 | 19 20 | oveq12d | |- ( ph -> ( ( ( 1st ` <. F , G >. ) ` X ) J ( ( 1st ` <. F , G >. ) ` Y ) ) = ( ( F ` X ) J ( F ` Y ) ) ) |
| 22 | 16 17 21 | f1eq123d | |- ( ph -> ( ( X ( 2nd ` <. F , G >. ) Y ) : ( X H Y ) -1-1-> ( ( ( 1st ` <. F , G >. ) ` X ) J ( ( 1st ` <. F , G >. ) ` Y ) ) <-> ( X G Y ) : ( X H Y ) -1-1-> ( ( F ` X ) J ( F ` Y ) ) ) ) |
| 23 | 4 | func2nd | |- ( ph -> ( 2nd ` <. K , L >. ) = L ) |
| 24 | 23 19 20 | oveq123d | |- ( ph -> ( ( ( 1st ` <. F , G >. ) ` X ) ( 2nd ` <. K , L >. ) ( ( 1st ` <. F , G >. ) ` Y ) ) = ( ( F ` X ) L ( F ` Y ) ) ) |
| 25 | 24 21 17 | foeq123d | |- ( ph -> ( ( ( ( 1st ` <. F , G >. ) ` X ) ( 2nd ` <. K , L >. ) ( ( 1st ` <. F , G >. ) ` Y ) ) : ( ( ( 1st ` <. F , G >. ) ` X ) J ( ( 1st ` <. F , G >. ) ` Y ) ) -onto-> ( X H Y ) <-> ( ( F ` X ) L ( F ` Y ) ) : ( ( F ` X ) J ( F ` Y ) ) -onto-> ( X H Y ) ) ) |
| 26 | 22 25 | anbi12d | |- ( ph -> ( ( ( X ( 2nd ` <. F , G >. ) Y ) : ( X H Y ) -1-1-> ( ( ( 1st ` <. F , G >. ) ` X ) J ( ( 1st ` <. F , G >. ) ` Y ) ) /\ ( ( ( 1st ` <. F , G >. ) ` X ) ( 2nd ` <. K , L >. ) ( ( 1st ` <. F , G >. ) ` Y ) ) : ( ( ( 1st ` <. F , G >. ) ` X ) J ( ( 1st ` <. F , G >. ) ` Y ) ) -onto-> ( X H Y ) ) <-> ( ( X G Y ) : ( X H Y ) -1-1-> ( ( F ` X ) J ( F ` Y ) ) /\ ( ( F ` X ) L ( F ` Y ) ) : ( ( F ` X ) J ( F ` Y ) ) -onto-> ( X H Y ) ) ) ) |
| 27 | 14 26 | mpbid | |- ( ph -> ( ( X G Y ) : ( X H Y ) -1-1-> ( ( F ` X ) J ( F ` Y ) ) /\ ( ( F ` X ) L ( F ` Y ) ) : ( ( F ` X ) J ( F ` Y ) ) -onto-> ( X H Y ) ) ) |