This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Another distributive law of converse over class composition. (Contributed by Scott Fenton, 3-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvco2 | ⊢ ◡ ( 𝐴 ∘ ◡ 𝐵 ) = ( 𝐵 ∘ ◡ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv | ⊢ Rel ◡ ( 𝐴 ∘ ◡ 𝐵 ) | |
| 2 | relco | ⊢ Rel ( 𝐵 ∘ ◡ 𝐴 ) | |
| 3 | vex | ⊢ 𝑦 ∈ V | |
| 4 | vex | ⊢ 𝑧 ∈ V | |
| 5 | 3 4 | brcnv | ⊢ ( 𝑦 ◡ 𝐵 𝑧 ↔ 𝑧 𝐵 𝑦 ) |
| 6 | vex | ⊢ 𝑥 ∈ V | |
| 7 | 6 4 | brcnv | ⊢ ( 𝑥 ◡ 𝐴 𝑧 ↔ 𝑧 𝐴 𝑥 ) |
| 8 | 7 | bicomi | ⊢ ( 𝑧 𝐴 𝑥 ↔ 𝑥 ◡ 𝐴 𝑧 ) |
| 9 | 5 8 | anbi12ci | ⊢ ( ( 𝑦 ◡ 𝐵 𝑧 ∧ 𝑧 𝐴 𝑥 ) ↔ ( 𝑥 ◡ 𝐴 𝑧 ∧ 𝑧 𝐵 𝑦 ) ) |
| 10 | 9 | exbii | ⊢ ( ∃ 𝑧 ( 𝑦 ◡ 𝐵 𝑧 ∧ 𝑧 𝐴 𝑥 ) ↔ ∃ 𝑧 ( 𝑥 ◡ 𝐴 𝑧 ∧ 𝑧 𝐵 𝑦 ) ) |
| 11 | 6 3 | opelcnv | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ◡ ( 𝐴 ∘ ◡ 𝐵 ) ↔ 〈 𝑦 , 𝑥 〉 ∈ ( 𝐴 ∘ ◡ 𝐵 ) ) |
| 12 | 3 6 | opelco | ⊢ ( 〈 𝑦 , 𝑥 〉 ∈ ( 𝐴 ∘ ◡ 𝐵 ) ↔ ∃ 𝑧 ( 𝑦 ◡ 𝐵 𝑧 ∧ 𝑧 𝐴 𝑥 ) ) |
| 13 | 11 12 | bitri | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ◡ ( 𝐴 ∘ ◡ 𝐵 ) ↔ ∃ 𝑧 ( 𝑦 ◡ 𝐵 𝑧 ∧ 𝑧 𝐴 𝑥 ) ) |
| 14 | 6 3 | opelco | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 ∘ ◡ 𝐴 ) ↔ ∃ 𝑧 ( 𝑥 ◡ 𝐴 𝑧 ∧ 𝑧 𝐵 𝑦 ) ) |
| 15 | 10 13 14 | 3bitr4i | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ◡ ( 𝐴 ∘ ◡ 𝐵 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 ∘ ◡ 𝐴 ) ) |
| 16 | 1 2 15 | eqrelriiv | ⊢ ◡ ( 𝐴 ∘ ◡ 𝐵 ) = ( 𝐵 ∘ ◡ 𝐴 ) |