This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Another distributive law of converse over class composition. (Contributed by Scott Fenton, 3-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvco2 | |- `' ( A o. `' B ) = ( B o. `' A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv | |- Rel `' ( A o. `' B ) |
|
| 2 | relco | |- Rel ( B o. `' A ) |
|
| 3 | vex | |- y e. _V |
|
| 4 | vex | |- z e. _V |
|
| 5 | 3 4 | brcnv | |- ( y `' B z <-> z B y ) |
| 6 | vex | |- x e. _V |
|
| 7 | 6 4 | brcnv | |- ( x `' A z <-> z A x ) |
| 8 | 7 | bicomi | |- ( z A x <-> x `' A z ) |
| 9 | 5 8 | anbi12ci | |- ( ( y `' B z /\ z A x ) <-> ( x `' A z /\ z B y ) ) |
| 10 | 9 | exbii | |- ( E. z ( y `' B z /\ z A x ) <-> E. z ( x `' A z /\ z B y ) ) |
| 11 | 6 3 | opelcnv | |- ( <. x , y >. e. `' ( A o. `' B ) <-> <. y , x >. e. ( A o. `' B ) ) |
| 12 | 3 6 | opelco | |- ( <. y , x >. e. ( A o. `' B ) <-> E. z ( y `' B z /\ z A x ) ) |
| 13 | 11 12 | bitri | |- ( <. x , y >. e. `' ( A o. `' B ) <-> E. z ( y `' B z /\ z A x ) ) |
| 14 | 6 3 | opelco | |- ( <. x , y >. e. ( B o. `' A ) <-> E. z ( x `' A z /\ z B y ) ) |
| 15 | 10 13 14 | 3bitr4i | |- ( <. x , y >. e. `' ( A o. `' B ) <-> <. x , y >. e. ( B o. `' A ) ) |
| 16 | 1 2 15 | eqrelriiv | |- `' ( A o. `' B ) = ( B o. `' A ) |