This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the converse of the bra function. Based on the Riesz Lemma riesz4 , this very important theorem not only justifies the Dirac bra-ket notation, but allows to extract a unique vector from any continuous linear functional from which the functional can be recovered; i.e. a single vector can "store"all of the information contained in any entire continuous linear functional (mapping from ~H to CC ). (Contributed by NM, 26-May-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvbraval | ⊢ ( 𝑇 ∈ ( LinFn ∩ ContFn ) → ( ◡ bra ‘ 𝑇 ) = ( ℩ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bra11 | ⊢ bra : ℋ –1-1-onto→ ( LinFn ∩ ContFn ) | |
| 2 | f1ocnvfv | ⊢ ( ( bra : ℋ –1-1-onto→ ( LinFn ∩ ContFn ) ∧ 𝑦 ∈ ℋ ) → ( ( bra ‘ 𝑦 ) = 𝑇 → ( ◡ bra ‘ 𝑇 ) = 𝑦 ) ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝑦 ∈ ℋ → ( ( bra ‘ 𝑦 ) = 𝑇 → ( ◡ bra ‘ 𝑇 ) = 𝑦 ) ) |
| 4 | 3 | imp | ⊢ ( ( 𝑦 ∈ ℋ ∧ ( bra ‘ 𝑦 ) = 𝑇 ) → ( ◡ bra ‘ 𝑇 ) = 𝑦 ) |
| 5 | 4 | oveq2d | ⊢ ( ( 𝑦 ∈ ℋ ∧ ( bra ‘ 𝑦 ) = 𝑇 ) → ( 𝑥 ·ih ( ◡ bra ‘ 𝑇 ) ) = ( 𝑥 ·ih 𝑦 ) ) |
| 6 | 5 | adantll | ⊢ ( ( ( ( 𝑇 ∈ ( LinFn ∩ ContFn ) ∧ 𝑥 ∈ ℋ ) ∧ 𝑦 ∈ ℋ ) ∧ ( bra ‘ 𝑦 ) = 𝑇 ) → ( 𝑥 ·ih ( ◡ bra ‘ 𝑇 ) ) = ( 𝑥 ·ih 𝑦 ) ) |
| 7 | braval | ⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( bra ‘ 𝑦 ) ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) | |
| 8 | 7 | ancoms | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( bra ‘ 𝑦 ) ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) |
| 9 | 8 | adantll | ⊢ ( ( ( 𝑇 ∈ ( LinFn ∩ ContFn ) ∧ 𝑥 ∈ ℋ ) ∧ 𝑦 ∈ ℋ ) → ( ( bra ‘ 𝑦 ) ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) |
| 10 | 9 | adantr | ⊢ ( ( ( ( 𝑇 ∈ ( LinFn ∩ ContFn ) ∧ 𝑥 ∈ ℋ ) ∧ 𝑦 ∈ ℋ ) ∧ ( bra ‘ 𝑦 ) = 𝑇 ) → ( ( bra ‘ 𝑦 ) ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) |
| 11 | fveq1 | ⊢ ( ( bra ‘ 𝑦 ) = 𝑇 → ( ( bra ‘ 𝑦 ) ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ) | |
| 12 | 11 | adantl | ⊢ ( ( ( ( 𝑇 ∈ ( LinFn ∩ ContFn ) ∧ 𝑥 ∈ ℋ ) ∧ 𝑦 ∈ ℋ ) ∧ ( bra ‘ 𝑦 ) = 𝑇 ) → ( ( bra ‘ 𝑦 ) ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ) |
| 13 | 6 10 12 | 3eqtr2rd | ⊢ ( ( ( ( 𝑇 ∈ ( LinFn ∩ ContFn ) ∧ 𝑥 ∈ ℋ ) ∧ 𝑦 ∈ ℋ ) ∧ ( bra ‘ 𝑦 ) = 𝑇 ) → ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih ( ◡ bra ‘ 𝑇 ) ) ) |
| 14 | rnbra | ⊢ ran bra = ( LinFn ∩ ContFn ) | |
| 15 | 14 | eleq2i | ⊢ ( 𝑇 ∈ ran bra ↔ 𝑇 ∈ ( LinFn ∩ ContFn ) ) |
| 16 | f1of | ⊢ ( bra : ℋ –1-1-onto→ ( LinFn ∩ ContFn ) → bra : ℋ ⟶ ( LinFn ∩ ContFn ) ) | |
| 17 | 1 16 | ax-mp | ⊢ bra : ℋ ⟶ ( LinFn ∩ ContFn ) |
| 18 | ffn | ⊢ ( bra : ℋ ⟶ ( LinFn ∩ ContFn ) → bra Fn ℋ ) | |
| 19 | 17 18 | ax-mp | ⊢ bra Fn ℋ |
| 20 | fvelrnb | ⊢ ( bra Fn ℋ → ( 𝑇 ∈ ran bra ↔ ∃ 𝑦 ∈ ℋ ( bra ‘ 𝑦 ) = 𝑇 ) ) | |
| 21 | 19 20 | ax-mp | ⊢ ( 𝑇 ∈ ran bra ↔ ∃ 𝑦 ∈ ℋ ( bra ‘ 𝑦 ) = 𝑇 ) |
| 22 | 15 21 | sylbb1 | ⊢ ( 𝑇 ∈ ( LinFn ∩ ContFn ) → ∃ 𝑦 ∈ ℋ ( bra ‘ 𝑦 ) = 𝑇 ) |
| 23 | 22 | adantr | ⊢ ( ( 𝑇 ∈ ( LinFn ∩ ContFn ) ∧ 𝑥 ∈ ℋ ) → ∃ 𝑦 ∈ ℋ ( bra ‘ 𝑦 ) = 𝑇 ) |
| 24 | 13 23 | r19.29a | ⊢ ( ( 𝑇 ∈ ( LinFn ∩ ContFn ) ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih ( ◡ bra ‘ 𝑇 ) ) ) |
| 25 | 24 | ralrimiva | ⊢ ( 𝑇 ∈ ( LinFn ∩ ContFn ) → ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih ( ◡ bra ‘ 𝑇 ) ) ) |
| 26 | f1ocnvdm | ⊢ ( ( bra : ℋ –1-1-onto→ ( LinFn ∩ ContFn ) ∧ 𝑇 ∈ ( LinFn ∩ ContFn ) ) → ( ◡ bra ‘ 𝑇 ) ∈ ℋ ) | |
| 27 | 1 26 | mpan | ⊢ ( 𝑇 ∈ ( LinFn ∩ ContFn ) → ( ◡ bra ‘ 𝑇 ) ∈ ℋ ) |
| 28 | riesz4 | ⊢ ( 𝑇 ∈ ( LinFn ∩ ContFn ) → ∃! 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) | |
| 29 | oveq2 | ⊢ ( 𝑦 = ( ◡ bra ‘ 𝑇 ) → ( 𝑥 ·ih 𝑦 ) = ( 𝑥 ·ih ( ◡ bra ‘ 𝑇 ) ) ) | |
| 30 | 29 | eqeq2d | ⊢ ( 𝑦 = ( ◡ bra ‘ 𝑇 ) → ( ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ↔ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih ( ◡ bra ‘ 𝑇 ) ) ) ) |
| 31 | 30 | ralbidv | ⊢ ( 𝑦 = ( ◡ bra ‘ 𝑇 ) → ( ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih ( ◡ bra ‘ 𝑇 ) ) ) ) |
| 32 | 31 | riota2 | ⊢ ( ( ( ◡ bra ‘ 𝑇 ) ∈ ℋ ∧ ∃! 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) → ( ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih ( ◡ bra ‘ 𝑇 ) ) ↔ ( ℩ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) = ( ◡ bra ‘ 𝑇 ) ) ) |
| 33 | 27 28 32 | syl2anc | ⊢ ( 𝑇 ∈ ( LinFn ∩ ContFn ) → ( ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih ( ◡ bra ‘ 𝑇 ) ) ↔ ( ℩ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) = ( ◡ bra ‘ 𝑇 ) ) ) |
| 34 | 25 33 | mpbid | ⊢ ( 𝑇 ∈ ( LinFn ∩ ContFn ) → ( ℩ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) = ( ◡ bra ‘ 𝑇 ) ) |
| 35 | 34 | eqcomd | ⊢ ( 𝑇 ∈ ( LinFn ∩ ContFn ) → ( ◡ bra ‘ 𝑇 ) = ( ℩ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) ) |