This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define thecentralizer of a subset of a magma, which is the set of elements each of which commutes with each element of the given subset. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cntz | ⊢ Cntz = ( 𝑚 ∈ V ↦ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑚 ) ↦ { 𝑥 ∈ ( Base ‘ 𝑚 ) ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑚 ) 𝑥 ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccntz | ⊢ Cntz | |
| 1 | vm | ⊢ 𝑚 | |
| 2 | cvv | ⊢ V | |
| 3 | vs | ⊢ 𝑠 | |
| 4 | cbs | ⊢ Base | |
| 5 | 1 | cv | ⊢ 𝑚 |
| 6 | 5 4 | cfv | ⊢ ( Base ‘ 𝑚 ) |
| 7 | 6 | cpw | ⊢ 𝒫 ( Base ‘ 𝑚 ) |
| 8 | vx | ⊢ 𝑥 | |
| 9 | vy | ⊢ 𝑦 | |
| 10 | 3 | cv | ⊢ 𝑠 |
| 11 | 8 | cv | ⊢ 𝑥 |
| 12 | cplusg | ⊢ +g | |
| 13 | 5 12 | cfv | ⊢ ( +g ‘ 𝑚 ) |
| 14 | 9 | cv | ⊢ 𝑦 |
| 15 | 11 14 13 | co | ⊢ ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) |
| 16 | 14 11 13 | co | ⊢ ( 𝑦 ( +g ‘ 𝑚 ) 𝑥 ) |
| 17 | 15 16 | wceq | ⊢ ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑚 ) 𝑥 ) |
| 18 | 17 9 10 | wral | ⊢ ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑚 ) 𝑥 ) |
| 19 | 18 8 6 | crab | ⊢ { 𝑥 ∈ ( Base ‘ 𝑚 ) ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑚 ) 𝑥 ) } |
| 20 | 3 7 19 | cmpt | ⊢ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑚 ) ↦ { 𝑥 ∈ ( Base ‘ 𝑚 ) ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑚 ) 𝑥 ) } ) |
| 21 | 1 2 20 | cmpt | ⊢ ( 𝑚 ∈ V ↦ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑚 ) ↦ { 𝑥 ∈ ( Base ‘ 𝑚 ) ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑚 ) 𝑥 ) } ) ) |
| 22 | 0 21 | wceq | ⊢ Cntz = ( 𝑚 ∈ V ↦ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑚 ) ↦ { 𝑥 ∈ ( Base ‘ 𝑚 ) ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑚 ) 𝑥 ) } ) ) |