This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: First level substitution for a centralizer. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cntzfval.b | |- B = ( Base ` M ) |
|
| cntzfval.p | |- .+ = ( +g ` M ) |
||
| cntzfval.z | |- Z = ( Cntz ` M ) |
||
| Assertion | cntzfval | |- ( M e. V -> Z = ( s e. ~P B |-> { x e. B | A. y e. s ( x .+ y ) = ( y .+ x ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzfval.b | |- B = ( Base ` M ) |
|
| 2 | cntzfval.p | |- .+ = ( +g ` M ) |
|
| 3 | cntzfval.z | |- Z = ( Cntz ` M ) |
|
| 4 | elex | |- ( M e. V -> M e. _V ) |
|
| 5 | fveq2 | |- ( m = M -> ( Base ` m ) = ( Base ` M ) ) |
|
| 6 | 5 1 | eqtr4di | |- ( m = M -> ( Base ` m ) = B ) |
| 7 | 6 | pweqd | |- ( m = M -> ~P ( Base ` m ) = ~P B ) |
| 8 | fveq2 | |- ( m = M -> ( +g ` m ) = ( +g ` M ) ) |
|
| 9 | 8 2 | eqtr4di | |- ( m = M -> ( +g ` m ) = .+ ) |
| 10 | 9 | oveqd | |- ( m = M -> ( x ( +g ` m ) y ) = ( x .+ y ) ) |
| 11 | 9 | oveqd | |- ( m = M -> ( y ( +g ` m ) x ) = ( y .+ x ) ) |
| 12 | 10 11 | eqeq12d | |- ( m = M -> ( ( x ( +g ` m ) y ) = ( y ( +g ` m ) x ) <-> ( x .+ y ) = ( y .+ x ) ) ) |
| 13 | 12 | ralbidv | |- ( m = M -> ( A. y e. s ( x ( +g ` m ) y ) = ( y ( +g ` m ) x ) <-> A. y e. s ( x .+ y ) = ( y .+ x ) ) ) |
| 14 | 6 13 | rabeqbidv | |- ( m = M -> { x e. ( Base ` m ) | A. y e. s ( x ( +g ` m ) y ) = ( y ( +g ` m ) x ) } = { x e. B | A. y e. s ( x .+ y ) = ( y .+ x ) } ) |
| 15 | 7 14 | mpteq12dv | |- ( m = M -> ( s e. ~P ( Base ` m ) |-> { x e. ( Base ` m ) | A. y e. s ( x ( +g ` m ) y ) = ( y ( +g ` m ) x ) } ) = ( s e. ~P B |-> { x e. B | A. y e. s ( x .+ y ) = ( y .+ x ) } ) ) |
| 16 | df-cntz | |- Cntz = ( m e. _V |-> ( s e. ~P ( Base ` m ) |-> { x e. ( Base ` m ) | A. y e. s ( x ( +g ` m ) y ) = ( y ( +g ` m ) x ) } ) ) |
|
| 17 | 1 | fvexi | |- B e. _V |
| 18 | 17 | pwex | |- ~P B e. _V |
| 19 | 18 | mptex | |- ( s e. ~P B |-> { x e. B | A. y e. s ( x .+ y ) = ( y .+ x ) } ) e. _V |
| 20 | 15 16 19 | fvmpt | |- ( M e. _V -> ( Cntz ` M ) = ( s e. ~P B |-> { x e. B | A. y e. s ( x .+ y ) = ( y .+ x ) } ) ) |
| 21 | 4 20 | syl | |- ( M e. V -> ( Cntz ` M ) = ( s e. ~P B |-> { x e. B | A. y e. s ( x .+ y ) = ( y .+ x ) } ) ) |
| 22 | 3 21 | eqtrid | |- ( M e. V -> Z = ( s e. ~P B |-> { x e. B | A. y e. s ( x .+ y ) = ( y .+ x ) } ) ) |