This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The evaluation of the inner function in a curried function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnmptk1.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| cnmptk1.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | ||
| cnmptk1.l | ⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ 𝑍 ) ) | ||
| cnmptkp.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) ) | ||
| cnmptkp.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑌 ) | ||
| cnmptkp.c | ⊢ ( 𝑦 = 𝐵 → 𝐴 = 𝐶 ) | ||
| Assertion | cnmptkp | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ∈ ( 𝐽 Cn 𝐿 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmptk1.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 2 | cnmptk1.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | |
| 3 | cnmptk1.l | ⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ 𝑍 ) ) | |
| 4 | cnmptkp.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) ) | |
| 5 | cnmptkp.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑌 ) | |
| 6 | cnmptkp.c | ⊢ ( 𝑦 = 𝐵 → 𝐴 = 𝐶 ) | |
| 7 | eqid | ⊢ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) = ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) | |
| 8 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑌 ) |
| 9 | 6 | eleq1d | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 ∈ ∪ 𝐿 ↔ 𝐶 ∈ ∪ 𝐿 ) ) |
| 10 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 11 | topontop | ⊢ ( 𝐿 ∈ ( TopOn ‘ 𝑍 ) → 𝐿 ∈ Top ) | |
| 12 | 3 11 | syl | ⊢ ( 𝜑 → 𝐿 ∈ Top ) |
| 13 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐿 ∈ Top ) |
| 14 | toptopon2 | ⊢ ( 𝐿 ∈ Top ↔ 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ) | |
| 15 | 13 14 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ) |
| 16 | topontop | ⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝐾 ∈ Top ) | |
| 17 | 2 16 | syl | ⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 18 | eqid | ⊢ ( 𝐿 ↑ko 𝐾 ) = ( 𝐿 ↑ko 𝐾 ) | |
| 19 | 18 | xkotopon | ⊢ ( ( 𝐾 ∈ Top ∧ 𝐿 ∈ Top ) → ( 𝐿 ↑ko 𝐾 ) ∈ ( TopOn ‘ ( 𝐾 Cn 𝐿 ) ) ) |
| 20 | 17 12 19 | syl2anc | ⊢ ( 𝜑 → ( 𝐿 ↑ko 𝐾 ) ∈ ( TopOn ‘ ( 𝐾 Cn 𝐿 ) ) ) |
| 21 | cnf2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐿 ↑ko 𝐾 ) ∈ ( TopOn ‘ ( 𝐾 Cn 𝐿 ) ) ∧ ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) ) → ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) : 𝑋 ⟶ ( 𝐾 Cn 𝐿 ) ) | |
| 22 | 1 20 4 21 | syl3anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) : 𝑋 ⟶ ( 𝐾 Cn 𝐿 ) ) |
| 23 | 22 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( 𝐾 Cn 𝐿 ) ) |
| 24 | cnf2 | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ∧ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( 𝐾 Cn 𝐿 ) ) → ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) : 𝑌 ⟶ ∪ 𝐿 ) | |
| 25 | 10 15 23 24 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) : 𝑌 ⟶ ∪ 𝐿 ) |
| 26 | 7 | fmpt | ⊢ ( ∀ 𝑦 ∈ 𝑌 𝐴 ∈ ∪ 𝐿 ↔ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) : 𝑌 ⟶ ∪ 𝐿 ) |
| 27 | 25 26 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑦 ∈ 𝑌 𝐴 ∈ ∪ 𝐿 ) |
| 28 | 9 27 8 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ∈ ∪ 𝐿 ) |
| 29 | 7 6 8 28 | fvmptd3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝐵 ) = 𝐶 ) |
| 30 | 29 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝐵 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) |
| 31 | toponuni | ⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝑌 = ∪ 𝐾 ) | |
| 32 | 2 31 | syl | ⊢ ( 𝜑 → 𝑌 = ∪ 𝐾 ) |
| 33 | 5 32 | eleqtrd | ⊢ ( 𝜑 → 𝐵 ∈ ∪ 𝐾 ) |
| 34 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 35 | 34 | xkopjcn | ⊢ ( ( 𝐾 ∈ Top ∧ 𝐿 ∈ Top ∧ 𝐵 ∈ ∪ 𝐾 ) → ( 𝑤 ∈ ( 𝐾 Cn 𝐿 ) ↦ ( 𝑤 ‘ 𝐵 ) ) ∈ ( ( 𝐿 ↑ko 𝐾 ) Cn 𝐿 ) ) |
| 36 | 17 12 33 35 | syl3anc | ⊢ ( 𝜑 → ( 𝑤 ∈ ( 𝐾 Cn 𝐿 ) ↦ ( 𝑤 ‘ 𝐵 ) ) ∈ ( ( 𝐿 ↑ko 𝐾 ) Cn 𝐿 ) ) |
| 37 | fveq1 | ⊢ ( 𝑤 = ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) → ( 𝑤 ‘ 𝐵 ) = ( ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝐵 ) ) | |
| 38 | 1 4 20 36 37 | cnmpt11 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝐵 ) ) ∈ ( 𝐽 Cn 𝐿 ) ) |
| 39 | 30 38 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ∈ ( 𝐽 Cn 𝐿 ) ) |