This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of two curried functions is jointly continuous. (Contributed by Mario Carneiro, 23-Mar-2015) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnmptkk.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| cnmptkk.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | ||
| cnmptkk.l | ⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ 𝑍 ) ) | ||
| cnmptkk.m | ⊢ ( 𝜑 → 𝑀 ∈ ( TopOn ‘ 𝑊 ) ) | ||
| cnmptkk.n | ⊢ ( 𝜑 → 𝐿 ∈ 𝑛-Locally Comp ) | ||
| cnmptkk.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) ) | ||
| cnmptkk.b | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ( 𝐽 Cn ( 𝑀 ↑ko 𝐿 ) ) ) | ||
| cnmptkk.c | ⊢ ( 𝑧 = 𝐴 → 𝐵 = 𝐶 ) | ||
| Assertion | cnmptkk | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) ∈ ( 𝐽 Cn ( 𝑀 ↑ko 𝐾 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmptkk.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 2 | cnmptkk.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | |
| 3 | cnmptkk.l | ⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ 𝑍 ) ) | |
| 4 | cnmptkk.m | ⊢ ( 𝜑 → 𝑀 ∈ ( TopOn ‘ 𝑊 ) ) | |
| 5 | cnmptkk.n | ⊢ ( 𝜑 → 𝐿 ∈ 𝑛-Locally Comp ) | |
| 6 | cnmptkk.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) ) | |
| 7 | cnmptkk.b | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ( 𝐽 Cn ( 𝑀 ↑ko 𝐿 ) ) ) | |
| 8 | cnmptkk.c | ⊢ ( 𝑧 = 𝐴 → 𝐵 = 𝐶 ) | |
| 9 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 10 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐿 ∈ ( TopOn ‘ 𝑍 ) ) |
| 11 | topontop | ⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝐾 ∈ Top ) | |
| 12 | 2 11 | syl | ⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 13 | nllytop | ⊢ ( 𝐿 ∈ 𝑛-Locally Comp → 𝐿 ∈ Top ) | |
| 14 | 5 13 | syl | ⊢ ( 𝜑 → 𝐿 ∈ Top ) |
| 15 | eqid | ⊢ ( 𝐿 ↑ko 𝐾 ) = ( 𝐿 ↑ko 𝐾 ) | |
| 16 | 15 | xkotopon | ⊢ ( ( 𝐾 ∈ Top ∧ 𝐿 ∈ Top ) → ( 𝐿 ↑ko 𝐾 ) ∈ ( TopOn ‘ ( 𝐾 Cn 𝐿 ) ) ) |
| 17 | 12 14 16 | syl2anc | ⊢ ( 𝜑 → ( 𝐿 ↑ko 𝐾 ) ∈ ( TopOn ‘ ( 𝐾 Cn 𝐿 ) ) ) |
| 18 | cnf2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐿 ↑ko 𝐾 ) ∈ ( TopOn ‘ ( 𝐾 Cn 𝐿 ) ) ∧ ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) ) → ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) : 𝑋 ⟶ ( 𝐾 Cn 𝐿 ) ) | |
| 19 | 1 17 6 18 | syl3anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) : 𝑋 ⟶ ( 𝐾 Cn 𝐿 ) ) |
| 20 | 19 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( 𝐾 Cn 𝐿 ) ) |
| 21 | cnf2 | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐿 ∈ ( TopOn ‘ 𝑍 ) ∧ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( 𝐾 Cn 𝐿 ) ) → ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) : 𝑌 ⟶ 𝑍 ) | |
| 22 | 9 10 20 21 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) : 𝑌 ⟶ 𝑍 ) |
| 23 | eqid | ⊢ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) = ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) | |
| 24 | 23 | fmpt | ⊢ ( ∀ 𝑦 ∈ 𝑌 𝐴 ∈ 𝑍 ↔ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) : 𝑌 ⟶ 𝑍 ) |
| 25 | 22 24 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑦 ∈ 𝑌 𝐴 ∈ 𝑍 ) |
| 26 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) = ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) | |
| 27 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) = ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ) | |
| 28 | 25 26 27 8 | fmptcof | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) = ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) |
| 29 | 28 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) ) |
| 30 | topontop | ⊢ ( 𝑀 ∈ ( TopOn ‘ 𝑊 ) → 𝑀 ∈ Top ) | |
| 31 | 4 30 | syl | ⊢ ( 𝜑 → 𝑀 ∈ Top ) |
| 32 | eqid | ⊢ ( 𝑀 ↑ko 𝐿 ) = ( 𝑀 ↑ko 𝐿 ) | |
| 33 | 32 | xkotopon | ⊢ ( ( 𝐿 ∈ Top ∧ 𝑀 ∈ Top ) → ( 𝑀 ↑ko 𝐿 ) ∈ ( TopOn ‘ ( 𝐿 Cn 𝑀 ) ) ) |
| 34 | 14 31 33 | syl2anc | ⊢ ( 𝜑 → ( 𝑀 ↑ko 𝐿 ) ∈ ( TopOn ‘ ( 𝐿 Cn 𝑀 ) ) ) |
| 35 | eqid | ⊢ ( 𝑓 ∈ ( 𝐿 Cn 𝑀 ) , 𝑔 ∈ ( 𝐾 Cn 𝐿 ) ↦ ( 𝑓 ∘ 𝑔 ) ) = ( 𝑓 ∈ ( 𝐿 Cn 𝑀 ) , 𝑔 ∈ ( 𝐾 Cn 𝐿 ) ↦ ( 𝑓 ∘ 𝑔 ) ) | |
| 36 | 35 | xkococn | ⊢ ( ( 𝐾 ∈ Top ∧ 𝐿 ∈ 𝑛-Locally Comp ∧ 𝑀 ∈ Top ) → ( 𝑓 ∈ ( 𝐿 Cn 𝑀 ) , 𝑔 ∈ ( 𝐾 Cn 𝐿 ) ↦ ( 𝑓 ∘ 𝑔 ) ) ∈ ( ( ( 𝑀 ↑ko 𝐿 ) ×t ( 𝐿 ↑ko 𝐾 ) ) Cn ( 𝑀 ↑ko 𝐾 ) ) ) |
| 37 | 12 5 31 36 | syl3anc | ⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐿 Cn 𝑀 ) , 𝑔 ∈ ( 𝐾 Cn 𝐿 ) ↦ ( 𝑓 ∘ 𝑔 ) ) ∈ ( ( ( 𝑀 ↑ko 𝐿 ) ×t ( 𝐿 ↑ko 𝐾 ) ) Cn ( 𝑀 ↑ko 𝐾 ) ) ) |
| 38 | coeq1 | ⊢ ( 𝑓 = ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) → ( 𝑓 ∘ 𝑔 ) = ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ 𝑔 ) ) | |
| 39 | coeq2 | ⊢ ( 𝑔 = ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) → ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ 𝑔 ) = ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ) | |
| 40 | 38 39 | sylan9eq | ⊢ ( ( 𝑓 = ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∧ 𝑔 = ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) → ( 𝑓 ∘ 𝑔 ) = ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ) |
| 41 | 1 7 6 34 17 37 40 | cnmpt12 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ) ∈ ( 𝐽 Cn ( 𝑀 ↑ko 𝐾 ) ) ) |
| 42 | 29 41 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) ∈ ( 𝐽 Cn ( 𝑀 ↑ko 𝐾 ) ) ) |