This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of a one-arg function with a curried function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnmptk1.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| cnmptk1.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | ||
| cnmptk1.l | ⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ 𝑍 ) ) | ||
| cnmpt1k.m | ⊢ ( 𝜑 → 𝑀 ∈ ( TopOn ‘ 𝑊 ) ) | ||
| cnmpt1k.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn 𝐿 ) ) | ||
| cnmpt1k.b | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑌 ↦ ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ( 𝐾 Cn ( 𝑀 ↑ko 𝐿 ) ) ) | ||
| cnmpt1k.c | ⊢ ( 𝑧 = 𝐴 → 𝐵 = 𝐶 ) | ||
| Assertion | cnmpt1k | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) ∈ ( 𝐾 Cn ( 𝑀 ↑ko 𝐽 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmptk1.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 2 | cnmptk1.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | |
| 3 | cnmptk1.l | ⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ 𝑍 ) ) | |
| 4 | cnmpt1k.m | ⊢ ( 𝜑 → 𝑀 ∈ ( TopOn ‘ 𝑊 ) ) | |
| 5 | cnmpt1k.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn 𝐿 ) ) | |
| 6 | cnmpt1k.b | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑌 ↦ ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ( 𝐾 Cn ( 𝑀 ↑ko 𝐿 ) ) ) | |
| 7 | cnmpt1k.c | ⊢ ( 𝑧 = 𝐴 → 𝐵 = 𝐶 ) | |
| 8 | cnf2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( TopOn ‘ 𝑍 ) ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn 𝐿 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ 𝑍 ) | |
| 9 | 1 3 5 8 | syl3anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ 𝑍 ) |
| 10 | eqid | ⊢ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) | |
| 11 | 10 | fmpt | ⊢ ( ∀ 𝑥 ∈ 𝑋 𝐴 ∈ 𝑍 ↔ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ 𝑍 ) |
| 12 | 9 11 | sylibr | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 𝐴 ∈ 𝑍 ) |
| 13 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ∀ 𝑥 ∈ 𝑋 𝐴 ∈ 𝑍 ) |
| 14 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) | |
| 15 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) = ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ) | |
| 16 | 13 14 15 7 | fmptcof | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) |
| 17 | 16 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑌 ↦ ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ) = ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) ) |
| 18 | topontop | ⊢ ( 𝐿 ∈ ( TopOn ‘ 𝑍 ) → 𝐿 ∈ Top ) | |
| 19 | 3 18 | syl | ⊢ ( 𝜑 → 𝐿 ∈ Top ) |
| 20 | topontop | ⊢ ( 𝑀 ∈ ( TopOn ‘ 𝑊 ) → 𝑀 ∈ Top ) | |
| 21 | 4 20 | syl | ⊢ ( 𝜑 → 𝑀 ∈ Top ) |
| 22 | eqid | ⊢ ( 𝑀 ↑ko 𝐿 ) = ( 𝑀 ↑ko 𝐿 ) | |
| 23 | 22 | xkotopon | ⊢ ( ( 𝐿 ∈ Top ∧ 𝑀 ∈ Top ) → ( 𝑀 ↑ko 𝐿 ) ∈ ( TopOn ‘ ( 𝐿 Cn 𝑀 ) ) ) |
| 24 | 19 21 23 | syl2anc | ⊢ ( 𝜑 → ( 𝑀 ↑ko 𝐿 ) ∈ ( TopOn ‘ ( 𝐿 Cn 𝑀 ) ) ) |
| 25 | 21 5 | xkoco1cn | ⊢ ( 𝜑 → ( 𝑤 ∈ ( 𝐿 Cn 𝑀 ) ↦ ( 𝑤 ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ) ∈ ( ( 𝑀 ↑ko 𝐿 ) Cn ( 𝑀 ↑ko 𝐽 ) ) ) |
| 26 | coeq1 | ⊢ ( 𝑤 = ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) → ( 𝑤 ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ) | |
| 27 | 2 6 24 25 26 | cnmpt11 | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑌 ↦ ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ) ∈ ( 𝐾 Cn ( 𝑀 ↑ko 𝐽 ) ) ) |
| 28 | 17 27 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) ∈ ( 𝐾 Cn ( 𝑀 ↑ko 𝐽 ) ) ) |